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Abstract

Let G, denote either symplectic or odd special orthogonal group
of rank n over a non-archimedean local field F'. We provide an explicit
description of the Aubert duals of irreducible representations of Gy,
which occur in the first inductive step in the realization of discrete
series representations starting from the strongly positive ones. Our
results might serve as a pattern for determination of Aubert duals of
general discrete series of G, and should produce an interesting part
of the unitary dual of this group. Furthermore, we obtain an explicit
form of some representations which are known to be unitarizable.

1 Introduction

Let F' denote a non-archimedean local field and let G,, stand for either sym-
plectic or odd special orthogonal group of rank n over F'. This paper presents
a continuation of our previous work on the explicit determination of the
Aubert duals of irreducible admissible representations of the group G,,. The
involution on the Grothendieck group of the smooth finite-length representa-
tions of a reductive group has been studied by many authors, and we use an
involution defined for general reductive p-adic groups in [2]. This involution
is known as the Aubert involution and the image of a representation under
this involution is called the Aubert dual of a representation. The Aubert
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involution can be used as a powerful method for studying the induced repre-
sentations of certain type, as has been done in [7, 27]. Also, it corresponds
to the interchange of the two copies of the special linear group SL(2,C) in
local Arthur parameters, i.e., the local Arthur parameters of an irreducible
representation and its Aubert dual are symmetric. Although this involution
satisfies many remarkable properties, an explicit description of the Aubert
duals of irreducible representations is known only for a small class of repre-
sentations. Our intention is to extend this knowledge to a certain class of
discrete series representations.

By the Moeeglin-Tadi¢ classification of discrete series, every non-cuspidal
discrete series representation of G, can be obtained in a finite number of
steps starting from a strongly positive discrete series of G, for some n’ < n.
Each of these steps consists of a parabolic induction with respect to a max-
imal parabolic subgroup from a representation which has an appropriate
irreducible essentially square-integrable representation on the general linear
group part and a previous discrete series representation on the classical group
part. In terms of this classification, each step consists of adding two consecu-
tive elements in the Jordan block of a discrete series representation of smaller
rank group of the same type (the Jordan block is one of the parameters at-
tached to a discrete series by this classification). For more details regarding
this construction we refer the reader to [20] and [22]. However, to keep the
notation as simple as possible, throughout the paper we do not follow the no-
tation used in [22] and rather use an algebraic formulation when introducing
a discrete series representation.

We emphasize that the classification of discrete series given in [20, 22]
now holds unconditionally, due to results of [1], [21, Théoreme 3.1.1] and
[4, Theorem 7.8]. A shorter form of this classification, which covers both
classical and odd general spin groups, can be found in [9].

In our previous paper ([17]), we obtained an explicit description of the
Aubert duals of strongly positive discrete series representations of GG,,. The
natural following step is to investigate the Aubert duals of discrete series rep-
resentations obtained by adding two consecutive elements in the Jordan block
of a strongly positive representation. Such a construction presents the first
inductive step in the Moeeglin-Tadi¢ classification, and provides much more
complicated discrete series than the strongly positive ones. We note that such
discrete series have also played a crucial role in the determination of the first
occurrence indices of discrete series in the metaplectic odd-orthogonal tower
([13]). Also, in the generalized principal series induced from such a discrete
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series on the classical group part occur much more complicated situations
then in those induced from the strongly positive ones ([15]).

To determine the Aubert duals of discrete series appearing in the first
inductive step of the mentioned classification, we use essentially the same
methods as in [17]. Our approach is based on the knowledge on the Jacquet
modules of studied discrete series, obtained in [14] and [16], enhanced by
the intertwining operators method and basic properties of the Aubert invo-
lution. This enables us to determine some prominent members appearing in
the Jacquet modules of the Aubert duals, and then to provide an explicit de-
scription of the Aubert duals from their Jacquet modules. Since the Jacquet
modules of discrete series which we study are much more involved than those
of the strongly positive ones, we introduce the notion of so-called (o, 7)-triple,
which enables us to use an inductive procedure when determining the Aubert
duals. We note that similar methods have been used in [18] to describe the
Langlands quotients of the generalized principal series which are fixed under
the Aubert involution.

In the case of general linear groups, an algorithm for the explicit deter-
mination of the Aubert duals is given in [23], and later, by a more explicit
formula, in [10]. Also, we take a moment to note the recent paper of Jantzen
([8]), which provides an algorithm for classical groups in the half-integral
case.

An important conjecture regarding the Aubert involution states that it
preserves unitarizability, so our results should provide a class of unitariz-
able representations. Furthermore, results of [5, 25] show that the obtained
representations are in particular cases already known to be unitarizable.

Let us now describe the content of the paper in more details. In the
second section we recall the required notations and preliminaries. In the
third section we prove some technical results which are used later in the
paper. A description of the Aubert duals in the most complicated cases
is provided in the fourth section, using a case-by-case consideration. The
exceptional cases are discussed in the fifth section.

This work has been supported by Croatian Science Foundation under the
project 9364.



2 Preliminaries

Throughout the paper, F' will denote a non-archimedean local field of char-
acteristic different than two.

For a connected reductive p-adic group G defined over field F', let X
denote the set of roots of G with respect to fixed minimal parabolic sub-
group and let A stand for a basis of 3. For © C A, we let Pg denote the
standard parabolic subgroup of G corresponding to © and let Mg denote a
corresponding standard Levi subgroup. Let W denote the Weyl group of G.

For a parabolic subgroup P of G with the Levi subgroup M, and a rep-
resentation o of M, we denote by iy(c) a normalized parabolically induced
representation of G,, induced from o. Also, let r)/(o) stand for the normal-
ized Jacquet module of an admissible finite length representation o of G,
with respect to the standard parabolic subgroup having the Levi subgroup
equal to M.

We take a moment to recall the definition of the Aubert involution and
some of its basic properties ([2, 3]).

Theorem 2.1. Define the operator on the Grothendieck group of admissible
representations of finite length of G by

Da =) (=1)®irsg 0 rase.
OCcA

Operator D¢g has the following properties:
(1) D¢ is an involution.
(i) Dg takes irreducible representations to irreducible ones.
(i4i) If o is an irreducible cuspidal representation, then Dg(o) = (—1)1%lg.
(iv) For a standard Levi subgroup M = Mg, we have
v © Dg = Ad(w) 0 Dy-1(ar) © 101,
where w is the longest element of the set {w € W : w™(0) > 0}.

(v) For a standard Levi subgroup M = Mg, we have Dg o iy =ip 0 Dy



Let us now describe the groups that we consider. We look at the usual
towers of symplectic or orthogonal groups G,, = G(V},) that are groups of
isometries of F-spaces (V,,, (, )),n > 0, where the form (, ) is non-degenerate
and it is skew-symmetric if the tower is symplectic and symmetric otherwise.
The set of standard parabolic subgroups of the group G,, will be fixed in the
usual way.

Then the Levi subgroups of standard parabolic subgroups have the form
M = GL(ny, F) x --- x GL(ny, F) X Gy, where GL(n;, F') denotes a gen-
eral linear group of rank n; over F. For simplicity of exposition, if §;,7 =
1,2,..., k denotes a representation of GL(n;, F'), and if 7 stands for a repre-
sentation of G,,,, we let 91 X9 X - - - X, X7 stand for the induced representation
iv(01®0® - @6, ®7T) of Gy, where M is the standard Levi subgroup iso-
morphic to GL(ny, F')x---xGL(ng, F)xG,,. Here n = ny+ng+- - -+ng+m.

Similarly, by 6; x dy X -+ X J, we denote the induced representation
in (01 ® 02 ® - -+ ® &) of the group GL(n', F'), where the Levi subgroup M’
equals GL(ny, F) x GL(ng, F) X - -+ X GL(ng, F) and n’ = ny +ng+ - - - + ny.

Let Irr(GL(n, F')) denote the set of all irreducible admissible represen-
tations of GL(n, F'), and let Irr(G,,) denote the set of all irreducible admis-
sible representations of G,. Let R(GL(n,F)) stand for the Grothendieck
group of admissible representations of finite length of GL(n, F') and define
R(GL) = &,>0R(GL(n, F)). Similarly, let R(G,,) stand for the Grothendieck
group of admissible representations of finite length of G,, and define R(G) =
Dn>oR(Gh).

If o is an irreducible representation of GG,,, we denote by & the represen-
tation £ D¢, (o), taking the sign + or — such that ¢ is a positive element in
R(G,). We call ¢ the Aubert dual of o.

Using Jacquet modules for the maximal standard parabolic subgroups
of GL(n, F), we can define m*(7) = > _(r@(7)) € R(GL) ® R(GL), for
an irreducible representation 7 of GL(n, F'), and then extend m* linearly to
the whole of R(GL). Here r(;)(m) denotes the normalized Jacquet module
of m with respect to the standard parabolic subgroup having the Levi sub-
group equal to GL(k,F) x GL(n — k,F'), and we identify r)(7) with its
semisimplification in R(GL(k, F)) ® R(GL(n — k, F)).

Let us denote by v the composition of the determinant mapping with the
normalized absolute value on F. Let p € Irr(GL(k, F')) denote a cuspidal
representation. By a segment of cuspidal representations we mean a set of
the form {p,vp,...,v"p}, which we denote by [p,v"p].

The results of [29] show that each essentially square-integrable representa-

5



tion § € Irr(GL(n, F)) is attached to a segment, and we set § = §([v%p, 1°p]),
which is the unique irreducible subrepresentation of °p x 1*71p x - - x 1%,
where a,b € R are such that b — a is a non-negative integer and p is an
irreducible unitary cuspidal representation of some GL(k, F').

We frequently use the following equation:

b

m* ([ p, ' p))) = D 5o, o)) @ 8([v"p, v'p).

i=a—1

Note that multiplicativity of m* implies

n

m* ([ [o([v* pj, v p))))

j=1

Hl Z ([ pj, 0P pj]) @ 8([V% pj, v pj])).

tj=a;—1

For a representation o € R(G)) and 1 < k < n, we denote by 7 (o)
the normalized Jacquet module of o with respect to the parabolic subgroup
P,y having the Levi subgroup equal to GL(k, F') x G,,—i. We identify (o)
with its semisimplification in R(GL(k, F')) ® R(G,—x) and consider

1 ( —1®U+Z7’ ) € R(GL) ® R(G).

We take a moment to state a result, derived in [26], which presents a
crucial structural formula for our calculations of Jacquet modules of classical
groups.

Lemma 2.2. Let p € Irr(GL(n, F)) denote a cuspidal representation and
let k,1 € R such that k + [ is a non-negative integer. Let o € R(G) be an
admissible representation of finite length. Write p*(o) =3 7 ®d’. Then
the following holds:

(5[ p, ') Z 225 v, ) X ([ p, V) x T8

i=—k—1 j=t 7,0’

® ([ p,1p]) .

We omit ([vp,v¥p]) if x > y.



We briefly recall the Langlands classification for general linear groups. We
favor the subrepresentation version of this classification over the quotient one.

For every irreducible essentially square-integrable representation § € R(GL),
there is a unique e(§) € R such that »=¢)§ is unitarizable. Note that
e(6([v°p,%p])) = (a+ b)/2. Suppose that d1,ds, ..., d; are irreducible essen-
tially square-integrable representations such that e(d;) < e(da) < ... < e(dy).
Then the induced representation d; X do X - -+ X d; has a unique irreducible
subrepresentation, which we denote by L(d1, 0, . .., dx). This irreducible sub-
representation is called the Langlands subrepresentation, and it appears with
multiplicity one in the composition series of §; X dg X - - - X ;.. Every irreducible
representation 7 € R(GL) is isomorphic to some L(d1,da, ..., 0;) and, for a
given m, the representations di,ds,...,0; are unique up to a permutation
among those §; having the same exponents.

Similarly, throughout the paper we use the subrepresentation version of
the Langlands classification for classical groups, since it is more appropri-
ate for our Jacquet module considerations. So, we realize a non-tempered
irreducible representation 7 of GG, as the unique irreducible (Langlands) sub-
representation of an induced representation of the form d; X g X - -+ X 9 X T,
where 7 is a tempered representation of some Gy, and 91, ds,...,0, € R(GL)
are irreducible essentially square-integrable representations such that e(d;) <
e(dg) < --- <e(dg) < 0. In this case, we write m = L(01,02, ..., 0k, T).

An irreducible representation o € R(G) is called strongly positive if for
every embedding

0 = VP X Upg X oo X VR PR X Ocysp,

where p; € R(GL(n,,,F)), i = 1,2,...,k, are cuspidal unitary representa-
tions and 0., € R(G) is an irreducible cuspidal representation, we have
s; > 0 for each 1.

For simplicity of exposition, in this paper we are interested in determining
the Aubert duals of certain discrete series whose cuspidal supports consist
of twists of one selfcontragredient irreducible cuspidal representation of a
general linear group and a cuspidal representation of some G,,. A description
of the Aubert duals of discrete series of the same type and with more general
cuspidal supports can then be deduced using [17, Theorem 3.6].

Thus, let p € Irr(GL(n,, F')) and o.ysp € Irr(G,) denote cuspidal repre-
sentations. There is a unique non-negative real number « such that v%p x
Ocusp Teduces, and it follows from [1] and [21, Théoreme 3.1.1] that « is a
half-integer.



Now we recall the description of the strongly positive discrete series ob-
tained in [20, 22] and in [12].

If a = 0, then the only strongly positive discrete series with the cuspidal
support consisting of 0., and of twists of p is oeysp.

Now assume o > 0 and let £ = [«], the smallest integer which is not
smaller than «. For every strongly positive discrete series o whose cuspidal
support entirely consists of 0.5, and of twists of p, there exist unique real
numbers ay, as, . .., ag such that —1 < a; < ay < --- < ag, a; —« is an integer
fori=1,2,...,k, and such that o is the unique irreducible subrepresentation
of the induced representation

([t p, v pl) x 6([ 1012 p, 002 pl) - 6((1% p, ™ p]) X Ty,

In the rest of the paper, we denote such representation o by SP(ay, as, ..., ay).
In the following several results we summarize the first inductive step in

the construction of discrete series starting from the strongly positive ones, as

in [22, 28], and describe the representations whose Aubert duals we study.

Theorem 2.3. Suppose that o > 0. The induced representation

(v % p, v *1p|) x SP(ay,...,a;_1,042,...,Q5+2),
where —1 < ay < ag < -+ < agyo such that o — a; 1s an integer for i =
1,2,...,k+2 and a; > 0, has exactly two irreducible subrepresentations

which are mutually non-isomorphic and square-integrable. We denote them
by o1 and o9. If j > 2 and a; > 0 if j = 2, there is a unique i € {1,2} such
that o; is a subrepresentation of the induced representation

([~ 1p,v%p|) x SP(ay,...,a;—2,0j41,...,0ks2).
Also, if 7 < k+ 1, then oy, fori' such that {i,i'} = {1,2}, is a subrepresen-
tation of the induced representation

[yt p, v+ 2p|) x SP(ay, ..., a5, ajts, ..., Qgtr2).

Furthermore, for 1 = 1,2, there is a unique irreducible tempered subrepresen-
tation T of §([v"%p,v%p|) x SP(ay,...,aj_1,aj12,...,axp2) such that o; is
a subrepresentation of 6([v% 1 p, v%+ip]) x 7.

Aubert duals of representations described in previous theorem are deter-
mined in Section 4. For aj1 —a; € {1,2}, it follows from [5, Theorem 3.1,
Theorem 3.2] and [6] that the Aubert duals of both representations oy and
o9 are unitarizable.



Theorem 2.4. Suppose that o = 0 and let a,b denote non-negative integers
such that a < b. The induced representation

§([v™p, V°p]) X Oeusp

has exactly two 1rreducible subrepresentations which are mutually non-isomorphic
and square-integrable. We denote them by o1 and o9. In R(G) we have

P X Ocysp = T1 + T_1, for irreducible and not isomorphic tempered represen-
tations T and T7_1. For every i € {1,2}, there is a unique j € {1,—1} such
that o; is a subrepresentation of

([vp,v*pl) x 6([vp, v°p]) > 7,

or, equivalently, such that p*(o;) contains the irreducible constituent

3([vp,v°p)) x 0([vp, v°p]) @ 7;.

For b —a € {1, 2}, it follows from [5, Theorem 3.1, Theorem 3.2] and [6]
that the Aubert duals of both representations o; and o, are unitarizable.

We also note that it follows from [25] that if o is a discrete series sub-
quotient of the principal series, considered groups are split, and charF = 0,
then the Aubert dual of ¢ is unitarizable.

Proposition 2.5. Suppose that o = % and let a,b denote positive half-
integers such that a < b. We denote two irreducible square-integrable subrep-

resentations of the induced representation

(0.7 % S(~ 3)

by o1 and o,. Note that S(—%) X Oeusp- There is a unique i € {1,2} such
that p*(o;) contains the irreducible constituent

3([v2p,v°p]) x 6([v2p,1p]) @ Tenep-

Aubert duals of representations described in Theorem 2.4 and Proposition
2.5 are determined in Section 5.



3 Some technical results

In this section we state and prove several technical results which are useful
for our determination of the Aubert duals of discrete series. We note that
the following lemma follows from [29], but we provide an alternative proof,
entirely based on the Jacquet module calculations.

Lemma 3.1. Let p denote an irreducible cuspidal representation of some
GL(n,, F), let a be a real number and let s denote a non-negative integer.
For k € {0,1,...,s}, the induced representation

L(Vap, Va+1p7 - Va+sp) % Va—i—k:p
18 1rreducible.

Proof. Tt follows from [29, Proposition 3.4] that if m*(L(v*p, v p, ..., vT5p)) >

v*p ® 7', for some irreducible representation n’, then z = a and 7’ =
L(v*p, ... v%Fp).
Let 7 denote an irreducible subquotient of L(v%p, v p, ... 1% ¥p) x
:I/.l

v p, and write m & L(dy, 09, ..., 6;). Note that e(6([v%p, ¥p])) < e(5([v* p,
v'p))) and 2’ < 2 imply y < ¢/ and, consequently,

S([v*p, v¥p]) x 8([v* p, ¥ pl) = 6([v" p, vV p]) x 8([v"p, ¥ p)).

Thus, there is a permutation iq,4s,...,7 of 1,2,...,] such that §; X dy X
o X 0p =0y, X 04y X --+ X 6, and, if we write &;; = d([1"7p, ¥ p]), such that
T <xipq fori=1,2,...,1—1.

Let us determine 9;,, d;,, . . ., d;,. From the cuspidal support of m we obtain
that 1 = a. Note that m*(7m) > v¥' p® 7’ for some irreducible representation
7', Since ¥ p @7’ is also contained in m*(L(v%p, v**p, ..., v+ p) x 12k p),
using multiplicativity of m* and [11], we get that y; € {a,a + k}. Let
us first assume y; = a + k and & # 0. Obviously, in this case 7’ =
L(v%p, v p, ..., v p). We consider two possibilities:

1. k> 2: Since 7 is a subrepresentation of d;, X d;, X -+ X ¢;,, it is also a
subrepresentation of v¥p X VY11 p X §([*1p, VY1 2p]) X iy X 0 X Oy
Using Frobenius reciprocity, we obtain that the Jacquet module of 7
with respect to an appropriate parabolic subgroup contains v**¥p ®
vetE=1ly @ 7. for some irreducible 7”. Thus, m*(L(v%p,v* p,. ..,
vt p)) > vy @ 1 a contradiction.
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2. k = 1: In this case, &;, = §([v"p,v*"!p]). Frobenius reciprocity implies
that the Jacquet module of 7 with respect to an appropriate parabolic
subgroup contains ¢;, ® d;, ® - - - ® 9;, and, using transitivity of Jacquet
modules, we deduce that there is some irreducible representation 7
such that m*(7) > ¢;, ® m; and the Jacquet module of m with respect
to an appropriate parabolic subgroup contains d;, @ - - - ® d;,. It is easy
to see that m = L(v*p,... v*"p), implying 6;, = v*"1p. Now we
have the following embeddings and isomorphism:

a+1
T 04y X VTP X 0y X oo X 0y,
a+1

=y

P X iy X Oy X -0 X0,

a+1

Vo x v X v x Gy X X 6,

By [22, Lemma 3.2], there is an irreducible representation o such that
T = v px vt pxmy and m*(w) > v px v p@ . Tt follows that
m*(L(v%p,v*p, ..., 1" %p)) contains an irreducible constituent of the
form v p ® 7}, a contradiction.

Thus, y; = a and §;; = v*p. There is some irreducible representation m;
such that m*(w) > v% ® m and the Jacquet module of 7; with respect to
an appropriate parabolic subgroup contains d;, ® d;, ® - -+ ® d;,. Let us first
consider the case k = 0. Again, there are two possibilities:

[

1. m = L, v p,...,v*p): Description of the Jacquet modules
of L(v*p,v**p, ... 1% *p) directly implies that | = s + 2 and §;; =
vti=2pfor j =2,3,..., 5+ 2.

a+s

2. m < L(v*p, v 2p ... v*Tp) X v%p: In the same way as before we
conclude that zo = a and yo € {a,a + 1}. If y» = a + 1, then an
embedding §;, x &;, = v x §([v%p, v p]) — v*Tp x v x Vo,
Frobenius reciprocity and transitivity of Jacquet modules imply that
m*(m) > v*Tp® ', for some irreducible 7/, which is impossible. Thus,
Yo = a, m*(m) > vip x vp @ L(v*p, v 2p, ... v p) and b, ® 6, @
-+ -®0;, is contained in the Jacquet module of L(v*™p, v**2p ... 1*F5p)
with respect to an appropriate parabolic subgroup. This again implies

l=s+2and d;, =v*7?p, for j=3,4,...,5+2.

If & > 0, an inductive application of the previous procedure gives 6;, =
v*i-lpfor j=1,2,...,k—1, and

LBy Bipits o1 8,) < L p i,
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Obviously, xx = a + k — 1 and in the same way as before we conclude that
yr €{a+k—1a+k}.

If y» = a+ k, it follows that d;,
L(v**p, ... ,v*p). Thus, &,,, = v*F

- X 0; 18 a subrepresentation of potk

X 04, X +++ X 0; is contained in
p, which implies that ¢;, X 5% =
p X VTR x path- 1,0><(5Zk+2 ><(5”.
Consequently, m*(d;, x d;,,, X - -+ X §;,) contains an irreducible constituent of
the form v4+%p x V“+kp®7r but this is impossible since m*(L(v**k=1p, vtk p,
VTp) x 17 *p) does not contain such an irreducible constituent. It
follows that y, = a+ k — 1 and
L(0;

T+1

0:

T2 * " * )

51'1) < L(Va+kp, I/CLJrIchlp7 o Va+sp) % I/aJka.

)

We see at once that zp41 = 242 = a + k. This also gives d;,,, X d;,,, =
X 0;,,,, so for j = 1,2 there is an irreducible representation ; such that
teps X0t p X+ X 05)) = V¥ p@mr;. Since m* (L(v*Hp, vttty o ot p)x
p) > vWp® 7', for some irreducible 7, implies y = a + k, we obtain that
0oy = 0iry = V" Fp. Now, in the same way as before, we conclude that
l=s+2and 0; =v*H2p for j=k+3k+4,...,1
Consequently, every irreducible subquotient of L(v%p, v*tp, ... v%7%p) x

v**kp is isomorphic to

d;

Tk+2
m*(6;

a+k

Lo, ... v p vtk p otk pathtl, b)), (1)

From properties of the Langlands classification follows that the representa-

tion (1) is contained with multiplicity one in L(v%p, v tp, ..., v47p) x v Fp.
Consequently, the induced representation L(v%p, v p, ... v2F5p) x v¥H*p is
irreducible. [l

Let ocusp € Irr(G,y) denote a cuspidal representation and let p denote
an irreducible selfcontragredient cuspidal representation of GL(n,, F'). Let
a > 0 denote the unique non-negative real number such that the induced
representation v*p X 0., reduces, and let k = [a].

Lemma 3.2. Suppose that o > 0 and that o is a subrepresentation of

([~ m+1p v™+2p]) X SP(ay,ag,...,ax), for =1 < a1 < ag < -+ < a <
ak+1 < Qpyo such that a—a; s an integer fori =1,2,...,k+2, and that o is
not a subrepresentation of 6([v=" p,v*+1p|) x SP(ay, as,...,ax 1, ak12). Let

T denote an irreducible tempered subrepresentation of §([v~%+1p, v™+1p|) X
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SP(ay,ay,...,a;) such that o < §([v™+1 1 p v@+2p]) x 7. Then p*(7) does
not contain

S([p™+tp, v®%+1p]) x §([v™* T p, v +1p]) @ 6 (v p, v™ p]) x SP (a1, ay, . .., ax)

or, equivalently, the Jacquet module of T with respect to an appropriate
parabolic subgroup does not contain an irreducible constituent of the form

~1 -1 1 1
V¥ p ® Vak+1p ® P+l PR k1 PR ® et P& kT p® oy,
for some irreducible representation oy .

Proof. Since o is not a subrepresentation of
([~ p,v™+1p]) x SP(ay,az, ..., ax_1,0k+2),

by [28, Proposition 7.2], u*(0) does not contain an irreducible constituent
of the form &([p*p, v*+1p]) @ ¢’. Also, by [28, Lemma 4.1], there is
a unique irreducible tempered subrepresentation of &([v~%+1p, v*+1p]) X
SP(ay,as,...,a;) which contains

5([Vak+lp7 Vak+1p]) X 5([Vak+1p’ Vak+1:0]) ® 5<[V_akp’ Vakp]) X SP(ala az, ..., ak)
(2)
in the Jacquet module with respect to an appropriate parabolic subgroup.
Suppose that p*(7) contains the irreducible constituent (2). Since o is
a subrepresentation of §([v®+1T1p v@+2p]) x 7, Frobenius reciprocity and
transitivity of Jacquet modules imply that the Jacquet module of ¢ with
respect to an appropriate parabolic subgroup contains

([t v p]) @ §([ ™ p, v+ pl) < S([p ™ p, v pl)@
® o([v™%p,v%*p]) x SP(ay,as,...,ax).

Using transitivity of Jacquet modules again, we assert that p*(o) > 0 ®
([y=%p,v*pl) x SP(ay,as,...,a), for some irreducible representation §
such that

m*(8) > §([v 1 p, v¥2pl) @ 6 ([T p, v p]) x ([, v p)).

Since p*(o) < p*(§([v~%+1p,v™+2p|) x SP(aq,as,. .., ax)), using Lemma 2.2
and a description of the cuspidal support of §, we conclude that

5 < 5[ p, v p]) x S([H p, v ).
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Since the induced representation §([v%!p, v +2p]) x §([v™*T1p, vo+1p]) is
irreducible, this implies that p*(o) > 6([v%* ™ p, v*+1p]) @ o', for some irre-
ducible ¢’, a contradiction.

It remains to prove that p*(7) contains the irreducible constituent (2) if
and only if the Jacquet module of 7 with respect to an appropriate parabolic
subgroup contains an irreducible constituent of the form

VU @y p ® l/ak“_lp ® yak+1—1p R ® yak"l‘lp ® yak+lp ® ;.

Let us first assume that the Jacquet module of 7 with respect to an appro-
priate parabolic subgroup contains an irreducible constituent of the form

VL @ WL ® l/ak“‘l_lp ® Vak“‘l_lp R ® ]/ak"l‘lp ® Vak—Hp ® ;.

Transitivity of Jacquet modules implies that there is some irreducible con-
stituent &’ ® oy of u*(7) such that v¥+1p @ v¥+1p @ V¥%+1~1p @ pu+1~1lp @
@ vty @ v+ is contained in the Jacquet module of 6 with respect
to an appropriate parabolic subgroup. Now, calculating

w (o[~ p, v™+1pl) x SP(ay, as, ..., ax)),

using Lemma 2.2, we deduce that there are —agp; 1 —1 <1 < j < agyq and
an irreducible constituent §” ® o} of pu*(SP(ay,as,...,ax)) such that 0" <
§([v™ip, vi+1p]) x §([7 T p, v¥+1p]) x 6" and o1 < §([v*p,v7p]) x of. From
the cuspidal support of &, we deduce that o] = SP(ay,aq,...,ax), 1 = —a;—
1, and j = a;. Consequently, &' = §([v* 1 p, v@%+1p]) x §([% T p, v™+1p]) and
o1 = 0([v=%p,v%p]) x SP(ay,as,...,a), so p*(7) contains the irreducible
constituent (2).

Let us now suppose that p*(7) contains the irreducible constituent (2).
Since the induced representation §([v1p, v%+1p]) x §([v**Hp vi+1p]) is
irreducible, it follows that the Jacquet module of 7 with respect to an ap-
propriate parabolic subgroup contains

Vak+1p ® l/ak+1p ® Vak+1—1p ® Vak+1—1p R ® l/ak+1p ® Vak+1p®
® o([v"%p,v%p]) x SP(ay,as, ..., a)

and lemma is proved. O

Proof of the following lemma follows directly from [14, Theorem 4.6] and
[16, Section 4].
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Lemma 3.3. Suppose that o > 0 and let o denote an irreducible subrepre-
sentation of the induced representation

6([Vﬁamp, Vam+lp]) X SP(CLl, ey =1, G2, - - - ,ak+2),

where —1 < ay < ag < -+ < agyo such that o — a; is an integer for i =
1,2,...,k+ 2. Let iynay denote the maximal i such that the Jacquet module
of o with respect to an appropriate parabolic subgroup contains an irreducible
constituent of the form vip @ vitlp @ - @ v™%+2p ® o'. Also, let | denote
the maximal © € {2,3,...,k + 2} such that a; > a;—1 + 2, or let | = 0, if
such i does not exist. If | > m + 1, then ipn.x = a, otherwise tymax = G-
Furthermore, if | > m + 1 we have

k—I14+2 —ap— 42 2

d(mep v 2 (T T o/~ 7p])) %

i=1 j=—ap_it3

% 5([V_al_(k_l+3)+1p, V_alp]),
and otherwise we have

‘ k—m+1—ag_it2—2 o ‘
S([pm w2 p, v imepl) 22 ( H IT s p,v70))x
= J=—Qk—i+3

% 5([V—am+1—(k—m+2)+1p, yamtpl).

Lemma 3.4. Suppose that o € Irr( n) is a subrepresentatzon of an induced
representation of the form v px v* Lpx - “lpoxa’, for some irreducible
representations p and o', and that u*(o) does not contain an irreducible con-
stituent of the form vWp® o” forye{x—l,x—1+1,...,0 —1}. Then o is
a subrepresentation of §([v*!p,v%p]) x o’

Proof. Condition regarding the Jacquet modules of o implies that o is con-
tained in the kernel of an intertwining operator
Vipx v lpx oo x v lpxo s v T p x v px o x v p i dl

Thus, o is a subrepresentation of §([v*1p, v%p]) x ¥ 2px - - x ¥ lpxo’. In
the same way we conclude that o is contained in the kernel of an intertwining
operator

S(™ o, ) x v P p x - x vl pxol —

V2o x ([ p, vp)) x v P x - x v p o’
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Consequently, o is a subrepresentation of §([v*2p,v%p]) X v*3p x -++ x
v*~'p x o’. A repeated application of this procedure finishes the proof. [

4 Aubert duals of discrete series

In this section we begin with a determination of the Aubert duals of certain
discrete series representations.

In the rest of the paper we fix an irreducible cuspidal representation
Teusp € Ir1(Gy, ) and an irreducible selfcontragredient cuspidal representation
p of some GL(n,, F'). Let a > 0 denote the unique non-negative real number
such that the induced representation v*p X s, reduces, and let k = [a].

In this section we assume a > 0. Also, if a = %, in this section we only
consider strongly positive representations of the form SP(a) where a > —%.
Remaining cases will be considered in the next section.

As we have already mentioned, we consider only discrete series whose
cuspidal support consists of the twist of p and of o¢ysp.

Let us first introduce the concept of the (o, d)-triple which enables us to
obtain an explicit description of the Aubert duals using an inductive proce-
dure.

Definition 4.1. Let o € Irr(G,,) denote a discrete series representation, and
let o denote its Aubert dual. Let w, 7" denote irreducible admissible represen-
tations of G, for some n'. Let | denote a non-negative integer and let T

be a (possibly empty) set {(x1,y1), (T2,Y2), ..., (X, )} where 0 < y; < xy,
a—z; €Z and o —y; €7, fori=1,2,...,1. We say that an ordered triple
(T, m,7") is a (o,0)-triple if the following holds:

(a) For an appropriate parabolic subgroup P of G, with the Levi subgroup
M, we have

(o) > p @1 TR @1 PR @p T e @ p T,
and, if
TM(U) > Vy1p®yy1+1p®...®y$1p®...®Vylp®yyl+1p®...®Vl“lp®ﬂ-”’
for some irreducible representation 7", then n" = .

(b) G < d1 X Iy X+ x o X7, where 6; = 6([v " "p,vYip|), fori =1,2,...,1,

and
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(b1) if e(6;) > e(d;) fori < j, then &; x 6; = 9; X 6;,

(62) if 7 = L(0141, 0142, - -, 0m,T) and e(5;) > e(d;) fori <1 and j >
l+]_, thenéiX(Sj%“éj X(SZ‘,

(b3) if for some parabolic subgroup P’ of G, having the Levi subgroup
M'" we have

r(@) 2@ QU @R @@

for an irreducible representation 7, then " < rym(n’) for an ap-
propriate parabolic subgroup P” having the Levi subgroup M" .

We emphasize that parts (a) and (b3) of the previous definition, together
with the first embedding in (b), allow us to determine the Aubert dual of o
using an inductive procedure, studying the Jacquet modules of 7 and using
properties of the Aubert involution. Also, properties (b1) and (b2) ensure that
in each step o is given as a subrepresentation of an induced representation
having a unique irreducible (Langlands) subrepresentation. This follows from
a simple commuting argument, and is also stated in Lemma 4.3.

Note that for a discrete series o € Irr(G,,), (0,0,5) is a (o,0)-triple in a
trivial way.

The following elementary lemma, which is a direct consequence of the
transitivity of Jacquet modules, is useful for our considerations.

Lemma 4.2. Suppose that o € Irr(G,), m € Irr(GL(ny, F)), ny < n, and
o € Irr(Gh_pn,) are such that if pu*(o) contains an irreducible constituent
of the form m ® «’', then ' = my. For irreducible representations w3 €
Ir(GL(ng, F)), ng < n—ny, and 7y € Irr(Gp_n,—ns), the following two
statements are equivalent:

1. If the Jacquet module of o with respect to an appropriate parabolic sub-
group contains an irreducible constituent m Q@ w3 @ w' then 7 = my.

2. If the Jacquet module of my with respect to an appropriate parabolic
subgroup contains an irreducible constituent w3 @ ©' then ' = 7y.

Proof of the following lemma is immediate.

Lemma 4.3. Suppose that an irreducible representation © of G, is a subrep-
resentation of the induced representation of the form §; X dg X -+ X &; X 7y,
where Ty is irreducible, §; € Irr(GL(n;, F)) is an essentially square-integrable
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representation such that e(8;) < 0 fori=1,2,...,1, and if e(6;) > e(d;) for
i < j, then 6; X §; = 6; x ;. Let my = L(d1+1, 0142 - - -, Om, T) and suppose
that if e(6;) > e(d;) fori <l and j > 1+1, then §; x §; = d; x §;. Then there
is a permutation 0;,, 0y, ..., 0;, 0f 01,00, ...,0m such that e(d;) < e(dy,) <
- <e(dy,) and

Oiy X 04y X - X 05, =01 X 09 X -+ X Oy
In particular, m = L(0iy, 04y, - -+ 04,5 T).

We now prove several results which will be useful in the verification of
properties given in Definition 4.1.

Lemma 4.4. Suppose that o € Irr(G,,) is a subrepresentation of an induced
representation of the form

5(1v"p,v ™ p]) x ([~ pov ")) x - x ([ pov Tt pl) wor, (3)

where p € Irr(GL(n,, F)) is self-contragredient, a > b; > 0, a — b; € Z for
1=1,2,...,7, and suppose that v*p does not appear in the cuspidal support
of o1. If the Jacquet module of o with respect to an appropriate parabolic
subgroup contains an irreducible constituent of the form

VPP @R @ T2pR QU R QU PR QU ® 0y,
then o9 = 0.

Proof. Transitivity of Jacquet modules implies that there is some irreducible
constituent m; ® oy of u*(o) such that v ™p @ - - v PR - R 2pR
e RUTYR- - QU p® - - @v % is contained in the Jacquet module of 7
with respect to an appropriate parabolic subgroup. We determine 7; using
the structural formula given in Lemma 2.2. Since o is a subrepresentation
of the induced representation (3), there exist —a — 1 < z; < y; < —0;, for
i=1,2,...,r, and an irreducible constituent m ® o3 of u*(oy) such that

m < T (6= p,v"p]) x 6(1#* p,v ™ pl)) x
i=1
and

oy < H (6([v™*p,v¥ip])) x 3.
i=1
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Since v“p does not appear in the cuspidal support of oy, v™%p does not
appear in the cuspidal support of m,. Furthemore, since —x; > 0, it follows
that ©; = y;, = —a — 1 for all « = 1,2,...,r. Consequently, o3 = o, and
09 = 0. This finishes the proof. O

In the same way as in the proof of the previous lemma, one obtains the
following result, where (v~¢p)™ denotes the product v=¢p x - - - x v¢p, where
v~ p appears m times:

Lemma 4.5. Suppose that o € Irr(G),) is a subrepresentation of an induced
representation of the form

S([v=p,v"p]) x (Vo)™ X oy,

where p € Irr(GL(n,, F)) is self-contragredient, a > b >0, a —b € Z, 1%
does not appear in the cuspidal support of o1, and p*(oy) does not contain
an irreducible constituent of the form v=°p ® o1. If the Jacquet module of
o with respect to an appropriate parabolic subgroup contains an irreducible
constituent of the form

v i@ p @ @U@ @ ® 0y,
where v™°p appears m times, then oo = 07y.

In the following lemma we prove some properties of (o, d)-triples which
are frequently used in the paper.

Lemma 4.6. Suppose that (T, 7,7’ is a (0,0)-triple and let a stand for the
mazimal positive i such that V'p appears in the cuspidal support of w. Let us
denote by b the maximal j such that the Jacquet module of m with respect to an
appropriate parabolic subgroup contains an irreducible constituent of the form
Vipuvitlp® - @ v ® o'. Then there is some irreducible representation
7! such that 7 is a subrepresentation of §([v=%p,v="p]) x 7, and if 7. =
L(8},0%,...,0 1) and e(6([v=%p,v"p])) > e(8)) for some i € {1,2,...,m},
then 6([v=2p,v=tp]) x 8 =2 6! x §([v=%p,v="p]).

Proof. Let | = |T|. Transitivity of Jacquet modules implies that the Jacquet
module of o with respect to an appropriate parabolic subgroup contains an
irreducible constituent of the form

,/y1p®,/y1—1p®_,,®Vz1p®,__®yyzp®yyz—lp®,,,®Vrzp®
p R/ MR- @ ® .

19



Elementary properties of the Aubert involution, given in Theorem 2.1 (iv),
now imply that the Jacquet module of & with respect to an appropriate
parabolic subgroup contains an irreducible constituent of the form

l/_ylp®l/_y1+1p®---®I/_x1p®---®I/_ylp®y_yl+1p®---®l/_$lp®
Qv et
Now property (b3) from Definition 4.1, together with transitivity of Jacquet

modules, shows that the Jacquet module of 7" with respect to an appropriate
parabolic subgroup contains an irreducible constituent of the form

v r e @uTip @ .

From [22, Lemma 3.1], we deduce that 7’ is a subrepresentation of an induced
representation of the form

vl x vy x o x v X T
Suppose that 7’ is not contained in the kernel of an intertwining operator

u*bp X Vﬁb*lp X oo X Vi+1p X Vip X V’lilp X yi*zp X oo XV p X 7T:/3 —

vl x vl x o x T o x VT o x Vip x TP p x o x v p xoy, (4)
for some i € {—b,—b—1,...,—a + 1}. Since v*p x V¥p = v¥p X v*p, for
x < y—2, it follows that 7’ is a subrepresentation of an induced representation

of the form
Vo x v o x o x v 1T,

Using transitivity of Jacquet modules again, it follows that the Jacquet mod-
ule of ¢ with respect to an appropriate parabolic subgroup contains an irre-
ducible constituent of the form

l/_ylp®l/_y1+1p®---®I/_x1p®"'®I/_ylp®y_yl+1p®--'®V_xlp®
V@i @@ty @,

and, consequently, using the properties of the Aubert involution listed in
Theorem 2.1 and the part (a) of Definition 4.1, the Jacquet module of 7
with respect to an appropriate parabolic subgroup contains an irreducible
constituent of the form

vty @uT R @) @ m,
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for i < —b, contradicting the choice of b. Thus, 7’ is contained in the kernel
of intertwining operator (4) for all i € {—b,—b—1,..., —a+1}. In the same
way as in the proof of Lemma 3.4, we see that n’ is a subrepresentation of
o([v=p,v="p]) x 5.

Let us now assume that 74 = L(8],85,...,0, ,7) and e(6([v%p,v"p])) >
e(d}), for some i € {1,2,...,m}. Let us write 0] = §([v*p,¥p]). Obviously,
x < 0 and, from the definition of a and a description of the cuspidal sup-
port of 75, we deduce that —a < x. Since e(5([v=%p,v7%p])) is greater than

e(6([v*p,v¥p])), it follows that y < —b and, consequently,

(v, v™"p]) x ([ p, v"p]) = 6([v*p, v¥p]) x 6([v ™ p,v™"p)).
This finishes the proof. n
From the proof of Lemma 4.6, we obtain the following result.

Corollary 4.7. Suppose that (T, w,7') is a (0,0)-triple and that 7 is a sub-
representation of an induced representation of the form

+1

Vipx VT p x oo x VT p X o

where o1 s not necessarily irreducible, and p*(m) does not contain an irre-
ducible constituent of the form VWp®R oy fory=ax+1,...,x+r. Then there
is an irreducible representation T such that 7' is a subrepresentation of

([ "p, v p]) X .

We now prove a sequence of lemmas which lead to a description of the
Aubert duals of studied discrete series representations.

Lemma 4.8. Suppose that (T, m,7') is a (0,0)-triple such that w is a sub-
representation of

([~ %+ p, v™+2p]) x SP(ay,as,. .., ax),
for =1 <a; <as < -+ <ap<ag < agrs such that o — a; is an integer for

i=1,2,...,k+2. Letl=|T|. Let x;11 = yi41 = arso and let 7 denote an
irreducible representation such that @’ — v=%+2p x 7.
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(i) Suppose that w is not a subrepresentation of
([ p,v™+1p]) x SP(ay,as,...,a5_1, o).
If a1 > ap1 + 1, let mp stand for an irreducible subrepresentation of
S([v=+1p, v*+2"1pl) x SP(ay, a9, ..., a)
which is not an irreducible subrepresentation of
([ % p, v™*+1p]) x SP(ay, asg,...,ax_1, 0542 — 1).

If agro = agr1+1, let my stand for the unique irreducible subrepresenta-
tion of 0([v="+1p,v%+1p]) x SP(ay,as, ..., ax) which does not contain

O([p™*p, v p) < O ( [ p, v+ p]) @O ([~ p, v pl) ¥ S P(as, @z, - ., ax)
in the Jacquet module with respect to an appropriate parabolic subgroup.
(ii) Suppose that 7 is a subrepresentation of
([~ % p, v™+1p]) x SP(ay, asg, ..., ax_1,ak12)-

If agio > agy1 + 1, let mp stand for the unique irreducible subrepresen-
tation of both induced representations

I([r " +1p, V“k+2_1p]) x SP(ay,as,...,a)

and
S([v™"p,v™+1p]) x SP(ay,az, ..., ap_1,ap42 — 1).

If apio = agy1 + 1, let mp stand for the unique irreducible subrepresen-
tation of §([v="+1p, v*+1p|) x SP(ay,ag,...,ax) which contains

([ p, v p]) x ([T p, v p))@
S([—v™p,v%p]) X SP(ay,as, ..., ax)

in the Jacquet module with respect to an appropriate parabolic subgroup.

Then (T'U{(x141,y141) }, 71, 7)) is a (o,0)-triple.
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Proof. We only prove (i), because (ii) can be proved in the same way.

By [19, Section 8] and Lemma 3.2, p*(7) > v%+2p ® m and if p*(m)
contains an irreducible constituent of the form v*+2p ® my, then my = 7.
Since (T, m,n') is a (0,0)-triple, it follows that (T"U {(z14+1, yi4+1)}, 71, 7))
satisfies the part (a) of Definition 4.1. Lemma 4.6 shows that it also satisfies
(b1) and (b2), while the property (b3) follows from Lemma 4.4. This finishes
the proof. n

Lemma 4.9. Suppose that (T, m,7') is a (0,0)-triple such that w is a sub-
representation of the induced representations

([~ %+ p, v™+1p]) x SP(ay,as,. .., ax),

where —1 < ay < ag < -+ < ap < apy1 Such that o — a; is an integer for
i=1,2,...,k+ 1. Let l = |T|. There are two possibilities to consider:

(1) Suppose that apy1 > ap + 1. Let x4 = Typ0 = Ypo1 = Yoo = ag1 and
let m denote an irreducible representation such that ' — v=%+1p X
v p X T

(a) If w is not a subrepresentation of
([ p,v™*+1p]) x SP(ay,az,...,ak_1,0k+1),
let w1 stand for an irreducible subrepresentation of
S([p w1t por=1pl) s SP(ay, as, . .., az)
which is not a subquotient of
S([v=%p, v+ pl) x SP(ay, ag, ..., a1, a1 — 1).
(b) If m is a subrepresentation of
S([v " p,v™+1p]) x SP(ay, ag, . .., ag-1, ax11),
let w stand for an irreducible subrepresentation of
S([p a1t p v pl) s SP(ay, ag, . .., ay)
which is also a subquotient of

S([v="p, v+ pl) 3 SP(ay, ag, ..., a5 1,a1 — 1).
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(i1) Suppose that a1 = ap+1. Let iyax denote the mazimal i such that the
Jacquet module of w with respect to an appropriate parabolic subgroup
contains an irreducible constituent of the form v%p @ v4itlp ® - ®
,/ak+1p ® Vak-up Qo'

(a) If imax = K+ 1, let 311 = Tiyo = Y1 = Yip2 = g1 and let
7, denote an irreducible representation such that ' — v=%+1p X
v-"+1p x ). Also, let m stand for the irreducible representation

([~ p,v%pl) x SP(ay,as,...,a).

(0) If tmax < k+1, let z41 = Yi41 = i1, Tip2 = Qkg1, Yigo = Qi
and let ) denote an irreducible representation such that @' —»
([~ m+1p, v~ %max p|) X v~ %+1p X 7). Also, let m denote an ir-
reducible subrepresentation of

([ p,v%pl) x SP(ay,ag, ..., ¢, —1,Cipay — Lyo o ar — 1)
which does not contain an irreducible constituent

—ak-l—l ak_l

p, vV pl) @
SP(CLl,CLQ, ey Qg 1 A T 1, e, Qp — 1)

v p x v p @ o([v

wmn the Jacquet module with respect to an appropriate parabolic sub-
group.

Then (T'U (141, Yi+1), (Ti42, Yia) }o m1, ) 45 a (0,0)-triple.

Proof. To shorten the notation, let 71 = §([v~%+1p, v™+1p|) x SP(ay,as,
..., ag) throughout this proof. We note that the induced representation 7 is
a length two representation and both its irreducible subquotients are subrep-
resentations. Furthermore, there is exactly one irreducible subrepresentation
of 7, which contains

([ p, v p]) x ([ p, v+ pl) @ 6 (V™% p, v p]) x SP(ar, as, ..., ay)

in its Jacquet module with respect to an appropriate parabolic subgroup.
Using [24, Theorem 4.1(iii)], one can conclude that such irreducible subrep-
resentation of 71 is also a subrepresentation of

([ " p, v+ 1p]) x SP(a1,az, ..., ar_1, Gpy1).
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Let us first discuss the part (7). By [24, Proposition 3.1], the induced rep-
resentation v~*+1p X SP(ay,as,...,a;) is irreducible. This provides the
following embeddings and isomorphisms:

7 1 = S([vT g v p)) x v % g SP(ay, ag, . . ., a)
> §([p " v pl) x v+ p x4 SP(ay, as, . .., ax)
> i x §([vm g %1 pl) ) SP(ay, ag, . . ., a)

> VUL X W ([T T, T ) s SP(ay, ag, - ay).

By [22, Lemma 3.2], there is an irreducible representation m; such that = <
VL p X v p Xy, and pf () > v p X v+ p@ry . Applying the structural
formula given in Lemma 2.2, we obtain that m; < §([p~%+1T1p par+1=1p]) %
SP(ay,as,...,a;). Let us determine 7 in terms of 7.

Suppose that

p(m) =
([ p, v pl) < 3([ ™ p, v p)@S([v™ % p, v p) S P(ar, as, . ., ay).

Since v*+1p does not appear in the cuspidal support of 7, applying the
structural formula to p*(v*+1p X v%+1p x ), we conclude that there is an
irreducible constituent 6 ® 0([v~* p, v% p|) x SP(ay, as, . .., ax) of p*(m ) such
that

([ p, v+t pl) X §([L ™ p, a1 pl) <UL X VBT X6,

Since m; < §([p %+t p par1=1pl) 5 SP(ay,as,...,a;) and only such con-
stituent of p*(§([p=%+1Tp, var1=1pl) x SP(ay, ag, ..., ax)) is

O™ p, v pl) x S([™ T p, v )@
([~ p,v*p]) x SP(ay,az,...,a;), (5)

it follows that m; is the unique irreducible subrepresentation of
S([v 1t p van=1 o) 5 SP(ay, ay, . . ., a)

which contains the irreducible representation (5) in the Jacquet module with
respect to an appropriate parabolic subgroup. In other words, m; is also a
subquotient of §([v=%p, v¥*+171p]) x SP(ay, as, ..., a5 1,ap41 — 1).
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Now suppose that p*(7) does not contain
([ p, v p]) x S([* Hp, v pl) @ O([v ™ p, v pl) 4 SP(ay, as, .. ., a).

Let us show that in this case m; is not a subquotient of &([v = p, v%+171p]) x
SP(ay,as,...,ax_1,a+1 — 1). Otherwise, since 7y is an irreducible subquo-
tient of §([p~%+1+1p pat1=1pl) s SP(ay, as,...,ax), p*(m) would contain
the irreducible constituent (5) and, using transitivity of Jacquet modules,
we conclude that the Jacquet module of m with respect to an appropriate
parabolic subgroup contains

I/ak+1p ® I/a/kJrlp ® Vak+171p ® I/ak+171p ® .. ® V(lk+1p ® Vak+1p®
® o([v™ % p,v%p]) x SP(ay,as,...,ax).

But, this is impossible since the only irreducible representation of a general
linear group containing v+ p@ v%+1 pQ v*+1-lpRQr*+t~lpx...@r*tly®
v *1pin the Jacquet module with respect to an appropriate parabolic sub-
group is 3([1o+1p, k1 p]) x 3([yar+1p, voks ),

Again, since v*+1p does not appear in the cuspidal support of 71, we get
that if v%+1p @ v™+1p ® 7y appears in the Jacquet module of m with respect
to an appropriate parabolic subgroup, for some irreducible 7y, then my = 7.

From Definition 4.1 we obtain that the Jacquet module of 7’ contains
an irreducible constituent of the form v=%+1p ® v=%+1p ® 7, which im-
plies that 7" is a subrepresentation of v=%+1p x v=%+1p x 7}, for some ir-
reducible representation 7j. Now Lemma 4.4 and Lemma 4.6 imply that
(T UA{(zi1, yi+1), (T142, Yi2) }, ™1, 1) is & (0, 0)-triple.

Let us now discuss the part (ii).

If imax = k + 1, the Jacquet module of 7 with respect to an appro-
priate parabolic subgroup contains an irreducible constituent of the form
VL QUM pRo’. Since v+ p X v%+1p is irreducible, using [22, Lemma 3.1,
Lemma 3.2], we deduce that there is some irreducible representation m; such
that 7 is a subrepresentation of v*+1p x v%+1p x 7. Also, since v*+ip
does not appear in the cuspidal support of 7y, if p*(7) contains an irre-
ducible constituent of the form v*+1p x v*+1p ® 7w}, then 77 = m. Fur-
thermore, using the structural formula given in Lemma 2.2 and irreducibility
of 0([v=%p,v*%p|) x SP(ay,as,...,a;), we obtain that the only irreducible
constituent of the form v%+1p x v*+1p ® o’ appearing in p*(my) is

v X v p @ O ([v % p, v p]) x SP(ay, ag, . .., ax).
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Thus, m = 0([v~%p,v%p]) X SP(ay,as,...,a;). In the same way as in the
proof of Lemma 4.6 we deduce that x*(7") contains an irreducible constituent
of the form v=%+1p x v~%+1p ® ¢”. Using [22, Lemma 3.1, Lemma 3.2] and
irreducibility of v=%+1p x v~™%+1p one can see that there is an irreducible
representation 7} such that 7’ is a subrepresentation of v~=%+1 px v~ %+1 p X 7],
Since v~%+1p does not appear in the cuspidal support of 7, and v*p appears
in the cuspidal support of 7] only for —agp 1 +1 < x < agyq — 1, we see at
once that (T'U {(zi41,Yi11), (X112, Yis2) }, ™1, 7)) is a (o, 7)-triple.

Let us now assume that i,,,x < k+1. In this case we have a;;1 = a;+1 for
J = Tmax, - - -, k. Similarly as before, 7 is a subrepresentation of an induced
representation of the form pmaxp x pmaxtly x ..o x po+1p x p%+1p 5y,
for some irreducible representation 7. Definition of i,,,, now implies that =
is also a subrepresentation of

L(v%max p ptimextln 0041 p) 5y g g Ty

Consequently, p*(7) > L(v%maxp, pomaxtlp - p0+1p) x p%+1p @ 7. Since
7 is a subrepresentation of 71, using the structural formula we deduce that
there exist —ap 1 — 1 <4 < j < agyq and an irreducible constituent 6 ® 7
of uw*(SP(ay,as,...,a)) such that

Ly mexp, ... %1 p) x v+t p < 5([v"p, v+ p]) X 8([1 p, v+ p]) X
and
m <[, 7)) X .

From [14, Theorem 4.6] we conclude that i > —ay,; and j < agyq. Obviously,
1 < —aj,,, and 7 > a;, . . If either i = —aq,,, or j =a,,, , we have

([ p, vt pl) x (1 p, v+ pl) x § 22 §([wmex p, v+ pl) X v+ p,

and this representation is irreducible and not isomorphic to the induced rep-
resentation L(y%maxp, ... v*+1p) X v%+1p §Ince iy < k + 1. Thus, v®maxp
appears in the cuspidal support of § and [14, Theorem 4.6] implies that
§ = L(v%maxp, ... v p), for some m € {imax, imax + 1, ..., k}. Thus,

([ p, vt p]) X 6([1 p, ™1 pl) X § 22 ([t p, v p]) X VL X 6.

If m # k, using formula for m* we see that v%maxp @ pmaxtip® - Q V% p
v+ p@u%+1 p is not contained in the Jacquet module of §([v*m+1 p, v%+1p]) X
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v¥*+1ipxd. Consequently, m =k, ¢ = —ag41, ] = ax+1 and 7 is an irreducible
subquotient of 6([v=% p, v%p|) x SP(ay,as, ..., 4, 1,0 —1,...,a5—1).

Such induced representation has two irreducible subquotients, which are
both subrepresentations and exactly one of them contains the irreducible
constituent v%p x v*p @ d([v=* M p, v~ 1p)) x SP(ay, as, ..., a4, 1,0, —
1,...,ar — 1) in its Jacquet module with respect to an appropriate parabolic
subgroup. Suppose that p*(m) contains

V% px v p@6([v= %o, v Y SP (a1, ag, . . ., Qi 1, Qi — 1, - -, ag—1).

Then m; is a subrepresentation of an induced representation of the form
v p X V% p X my. Thus, using Lemma 3.1 we obtain

e L(v%maxp plimectly 0kt gy s 0t 5
s YU X L(p%mex p yTimax Ty 8 ) e TR TR X Ty
(N l/ak+lp X Va‘imaxp X oo X Va‘kflp X L(Vakp, Vak+1p) X Vakp X Vakp N o
~

p8HLp X plimax g X - X VL X VT p X v p x LV p, v p) X .

Since L(v™ p,v™+1p) is a subrepresentation of v% p x v%+1p  Frobenius reci-
procity shows that the Jacquet module of m with respect to an appropriate
parabolic subgroup contains

Vak+1p®yaimaxp®'._®V(lk—1p®yakp % Vakp % Vakp®yak+1p®ﬂ-2_

Transitivity of Jacquet modules and the structural formula for p*(7) imply
that v%p x v%p X V% p Q@ V™ +1p ® Ty is contained in the Jacquet module of
[y~ ®+1p,v%pl) x SP(ay,ag, ... 65, 1,0, — 1,...,0k—1 — 1,ax), which
is impossible. Thus, p*(m) does not contain the irreducible constituent

Vakpxyakp®5([y_ak+lp7 Vak_lP:I) NS‘P(Gl? a27 c a/imax_lﬂ a/imax_]‘? c 7ak_1)

In the similar way as before we conclude that 7’ is a subrepresentation of an
induced representation of the form = %maxp x p~%max"1p x ... x p=%+1p x
v~ %+1p x o', Using the same arguments as in the proof of Lemma 4.6, we
deduce that there is some irreducible representation 7} such that

7 §([pT M p, v Yimax ) X YT p X T
Using Lemma 4.4, one readily sees that (7" U {(x;11, yis1), (T1a2, Yis2)}, 71,

71) is a (o, 0)-triple. O
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Lemma 4.10. Suppose that (T, 7,7') is a (0,0)-triple and that 7 is an ir-
reducible subrepresentation of §([v™"p, v*p|) X Ocyusp such that *(m) does not
contain the irreducible constituent v*p x v%p @ §([v=* p, v p]) X Cpusp-
Then n' is the unique irreducible subrepresentation of the induced represen-
tation

a-+1

Vi X v p X e X y[“]_o‘_lp X Ttemp

where Tiemy stands for

(i) SP(%,%,...,O./), if a # [,

(ii) the unique ireducible tempered subrepresentation of p x SP(1,2,..., «)
which does not contain an irreducible representation of the form vp®w”
in its Jacquet module with respect to an appropriate parabolic subgroup,

if = [a].

Proof. Note that, by Lemma 2.2, if an irreducible constituent of the form
v¥p @ o' appears in p*(m), then x = «. Also, no irreducible representation
of the form v%*p ® v*p ® ¢’ appears in the Jacquet module of = with respect
to an appropriate parabolic subgroup. Using Definition 4.1 and properties of
the Aubert involution (Theorem 2.1 (iv)), we conclude that p*(7’) does not
contain an irreducible constituent of the form v*p® o} for x # —a, and that
an irreducible constituent of the form v=%p ® v~%p ® o] does not appear in
the Jacquet module of " with respect to an appropriate parabolic subgroup.

Obviously, p*(7) > v*p ® o’ for some irreducible ¢’ and standard ar-
guments show that there is some irreducible representation 7} such that
' — v % x 7). Let 7] = L(01,09,...,0m,7) and §; = d([v"ip, v¥ip]).

If y; > —a+ 1, we have

TS VTP X X e X Oy X T
v x V¥ p x S([Vp, v T p]) X Sy X e X Sy X T
=¥ x v % x S([V p, vV p]) X Gy X -+ X Gy X T,

which gives p*(n') > v¥'p ® o', for some irreducible ¢’, a contradiction.
Similarly, if y; = —a we have

s v x v % x 5[V p, v p]) X Gy X oo X Gy X T,

which is also impossible. Thus, y; = —a + 1. From the cuspidal support of
7" we deduce that z; € {—a, —a + 1}. If ;1 = —a, we have v~ % X §; —
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Hpxv=%pxv=%p which implies p*(7') > v~ p®0’, for some irreducible
o’. Thus, z; = y; = —a + 1. We also have ©’ — L(v=%p, v p) x §y x
“ X Oy X T.

In the same way we conclude that yo < —a + 2. From e(d;) < e(ds),
follows that y, > —a. If yy = —a + 1, we have d; — v=*T!p x §, for some
irreducible ¢’, and, using Lemma 3.1, we obtain that u*(7’) > v *"p® o,
for some irreducible o', a contradiction. Thus, yo = —a+2. I[f 2o < —a+1,
we have §; X dy = d9 X §; and in the same way as before we get p*(n') >

v="2p @ o', for some irreducible ¢’. Consequently, 7o = 7, = —a + 2
and 7 is a subrepresentatlon of L(v™%p, v p, v 2p) X 03 X -+ X 0y X T.
An inductive application of this procedure shows that &; = v~ *%p for i =
1,2,...,m. Since e(d;) < 0 for all 7, it follows that —a+m < 0.

If 7 is not a strongly positive representation, there exist b > a > 0
such that b — a is a non-negative integer and 7 is a subrepresentation of
§([vp, %p]) x 7/, for some irreducible representation 7. If b > 0, from the
cuspidal support of 7’ we see that v*~!p does not appear in the cuspidal
support of §; X dy X - -+ X §,,. Thus, in this case we have 7 < v’p x ¢’ and
0; X VPp 2 1Pp x §;, leading to p*(n') > vPp ® o, for some irreducible o, a
contradiction.

Consequently, if « # [a], 7 is a strongly positive representation. Since
% p can appear only once in the cuspidal support of a strongly positive
representatlon we get that 9, = V_%p and the cuspidal support of 7 consists
of yzp, V2p, o VP, Teusp, Where T, denotes the partial cuspidal support
of . By [14, Lemma 3.5], a strongly positive representation is completely
determined by its cuspidal support and, using the description of the strongly
positive representations, we get 7 = SP(;, ;’, C Q).

On the other hand, if & = [«], since p appears in neither §; X dy X - -+ X 0,
nor in the strongly positive part, 7 is a tempered representation which is a
subrepresentation of an induced representation of the form p x o, for some
strongly positive discrete series og,. This also implies that, if o = [a],
then 6,, = v~!p, since otherwise we would have p*(7') > p ® o, for some
irreducible ¢’. Thus, if a = [a], the partial cuspidal support of o, consists
of vp,2p, ..., V®p, Teusp and it follows that o, = SP(1,2,..., ).

The induced representation p x o5, reduces, and it is a direct sum of two
irreducible subrepresentations. By [28, Lemma 4.7, Corollary 4.9], there is a
unique irreducible tempered subrepresentation of p x SP(1,2,...,«) which
contains an irreducible representation of the form vp ® #n” in its Jacquet
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module with respect to an appropriate parabolic subgroup. Such tempered
representation is also a subrepresentation of an induced representation of the
form vp x o', for some irreducible o’. Since v*pxvp = vpxv¥p for x < 0, the
assumption that 7 is a subrepresentation of vp x ¢’ leads to p* (') > vp®o”,
for some irreducible ¢”, which is impossible. Thus, 7 is the unique irreducible
tempered subrepresentation of p x SP(1,2,...,«) which does not contain an
irreducible representation of the form vp ® #” in its Jacquet module with
respect to an appropriate parabolic subgroup. This finishes the proof. O

We are now ready to prove our first main result.

Theorem 4.11. Suppose that a discrete series o is a subrepresentation of
an induced representation of the form

([~ %+ p, v™+2p]) x SP(ay,as,. .., ak),

where —1 < a1 < ay < -+ < ap < Qg1 < Agyo are Such that o — a;
is an integer for i = 1,2,....k + 2, and o is not a subrepresentation of
the induced representation §([v=%p, v™*+1p|) x SP(ay, as, ..., ax_1,ax2). Let

ap=a— [a| — 1.
Then the Aubert dual & of o is the unique irreducible subrepresentation
of the induced representation

—apy1—1 k+1—ak—it1—2 [a]—a—1
i j—itl, ] j—i+1 i
H v'p X (H H ([ p, v pl) x ! p) X H V'p X Tyemp,
izfak+2 =1 j:fak,.prg i=—a«

(6)

where Tiemp stands for
(Z) SP(%?%""7Q)7 Zfa#lya—‘7

(i1) the unique ireducible tempered subrepresentation of p x SP(1,2,..., «)
which does not contain an irreducible representation of the form vpQx’
in its Jacquet module with respect to an appropriate parabolic subgroup,

if o = [a].

Proof. Theorem follows from an inductive application of Lemmas 4.8, 4.9
and 4.10, starting from the (o, o)-triple (0,0,5). We note that it follows
from the definition of the (o, d)-triple that in each step o is obtained as an
irreducible subrepresentation of the induced representation having a unique
irreducible subrepresentation.
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First we are in the case of Lemma 4.8, and a repeated application of
that lemma shows that o is a subrepresentation of H;lf;:j vip x m, for
an irreducible representation 7}. Also, in the last application of Lemma 4.8,
we end with a unique irreducible subrepresentation of §([v~%+1p, v®%+1p|) X

SP(ay,as,...,a;) which does not contain an irreducible constituent
S([™+tp, v®%+1p]) x §([v™* T p, v +1p]) @ 6 (v p, v™ p]) x SP (a1, ay, . .., ax)

in its Jacquet module with respect to an appropriate parabolic subgroup.

This puts us in a situation described in Lemma 4.9. First we are in the
part (a) of the case (i) of that lemma, which produces the part H;:af;i“ Vi px
v/ p. We end with an irreducible subrepresentation of §([v=% 1 p, v+ p]) %
SP(ay,as,...,a;) which is not a subquotient of the induced representation
S([v=%p, v 1p]) x SP(ay,aq, .. .,ax_1,ar + 1). This leads to the situation
described in part (b) of the case (i7) of Lemma 4.9.

After ar, — o + 1 applications of that lemma, we obtain the part

k+1 —ag—it1—2

IT II oo vip) x v,

1=2 j=—ak_it+2

written in a similar way as in [17, Section 3], using an approach analogous
to the one used in Lemma 3.3.

Furthermore, after the last application of Lemma 4.9, we end with an
irreducible subrepresentation of §([v™%p, v*p]) X G cusp, Which does not contain
the irreducible constituent

—a+1

vip x 1 @ (v 0, z/a_lp]) X Oeusp

in the Jacquet module with respect to an appropriate parabolic subgroup.
The rest of the proof now follows from Lemma 4.10. O]

We also note that if agio — ary1 € {1,2} then it follows from [5] that
the unique irreducible subrepresentation of the induced representation (6) is
unitarizable. If o is a subquotient of a principal series, considered groups
are split, and charF' = 0, it follows from [25] that the unique irreducible
subrepresentation of the induced representation (6) is unitarizable.

Now we state and prove several results which enable us to handle the
most complicated case.
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Lemma 4.12. Suppose that (T, m,7') is a (0,0)-triple such that 7 is a sub-
representation of both induced representations

[yt p, v+ 2p|) x SP(ay, ..., a5, ajis, ..., Qxi2)
and
([ % p, v *t1pl) x SP(ay, ..., aj_1,042,. .., Qk+2),
where —1 < a; < ay < --- < agyo are such that a — a; is an integer for

i=1,2,...,k+2,j<kanda; > 0. Letl = |T|. Letin.x denote the mazimal
1 such that the Jacquet module of ™ with respect to an appropriate parabolic
subgroup contains an irreducible constituent of the form v*pRX V' pR - ®
v¥+2p @ o' Then imax > j+ 2. Let 141 = agso, Yy = a;,,, and let w) denote
an trreducible representation such that

7 §([vT W2 p, v Ymax ) X Y.
If imax > J + 2, let @™ denote
S([v %t p, v+ 2pl) X SP(ay, ..., a4, ajs, ..\ Qi —1s Qigae — Ly oo, Qg — 1),
Otherwise, let ™ denote
S([v= %t p, vt pl) x SP(ay, ..., a5, a;03 — 1,. .., apea — 1).

Let mp stand for the unique common irreducible subrepresentation of ©” and
of
([~ p, v p|) X SP(a, ..y i1, Qjsay e oy Qi1 G — Ly ooy Qpra — 1),
Then (T'U{(x141,y141)}, 71, 7)) is a (o,0)-triple.
Proof. Since aji3 > aj + 1 by [12, Section 4] we have an embedding

SP(ar,...,a5,aj43,...,0k2) = V943 p X v4Hip X . X V2 px

SP(ay,...,aj,aj13 — 1, a0 — 1),

which provides another embedding and an isomorphism

[y p, v+ 2p|) x SP(ay, ..., aj, ajts, ..., Qgr2) —

V%‘+2p % 5([V_aj+1p, ,/aj+2—1p]) % ,/aj+3p % ,/aj+4p X e X ,/ak+2p>4
SP(ay,...,a5,aj43 —1,... a0 — 1) =

VOt2p X Y p X Yt X X v x §([UT % p, v p) )

SP(al, ey Ay A543y .y A2 — 1)
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Frobenius reciprocity gives iy, > j + 2. It remains to determine 7, the rest
of the proof then follows from Lemma 4.4 and Lemma 4.6.
There is some irreducible representation ¢ such that

pr(O([v~ %+ p, v%+2p|) x SP(ay, ..., 45,643, ..., 0k2)) > 6 @ T,
pr ([ p, v pl) x SP(ay, ..., aj-1,a12, ..., aks2)) = 6 @ T,

and the Jacquet module of § with respect to an appropriate parabolic sub-
group contains v*max p@ p*maxtlp®- - - Qr*+2p. Using the structural formula
and [14, Theorem 4.6], we obtain that either ¢ is isomorphic to the represen-
tation L(v%maxp, p¥imaxtip . p*+2p) (if ipa > j+2), or 0 is an irreducible
subquotient of v%+2p x L(v%+3p v%+ip ... v"%+2p) (if ipax = J + 2).

In the first case, m; is a common irreducible subquotient of

([t p, %+ 2p|) x SP(ay,...,a5,aj13, ..., Gippim1, Ginae — L, oo, Qg2 — 1)
and of
[y~ p, v p|) X SP(ay, ..., Qj—1, Qjsa, s Qi —1, Gigpae — Ly ooy Qo — 1),

Otherwise, 7 is a common irreducible subquotient of

S([v= %+ p, %271 pl) 3 SP(ay, ... a5, aj43 —1,...,ape — 1)
and of

(v %p, v *1ipl) x SP(ay, ... a;_1,a;402 — 1,... apyo — 1).

Now Theorem 2.3 and [24, Theorem 4.1(iii)] imply that the representation
7 is completely determined in this way and, if there is some irreducible
representation my such that the Jacquet module of 7 with respect to an
appropriate parabolic subgroup contains v%max p@ p%maxt1 pR- - - QU¥*+2 pR Ty,
then my = 7. O

Lemma 4.13. Suppose that (T, 7, 7') is a (0,0)-triple such that w is a unique
common irreducible subquotient of

(v, %)) x SP(ay,as,...,a5,a+1,...;a+k—1)
and of

[y %p,vp]) x SP(ay,as,...,a;—1,a,a+1,...,a+k —1),
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for =1 < a1 < ay < --- < a; < a such that o — a; is an integer for j =
1,2,...,4, and such that a—a; is an integer. Letl = |T|. Let x;11 = a+k—i,
Y1 = @, Tppo = Yo = a and let ) denote an irreducible representation such
that ™ — §([v=2"**ip, v=9]) x v™% x 7. Also, let m denote the unique
common irreducible subquotient of

S([v="Tp, v pl) x SP(ay,as,...,a;,a,a+1...,a+k—i—1)
and
S([v=%p,v" tp]) x SP(ay,as,...,ai-1,a—1,a,...,a+k—i—1).

Then (T'U{(z141,Yit1), (Tis2, Yiy2) }y m1, 7)) s a (0,0)-triple. We note that
if a; = a — 1, then the previous two induced representations are mutually
1somorphic and irreducible.

Proof. Clearly, 7 is a tempered subrepresentation of the induced representa-
tion d([v %, v%p]) x SP(ay,as,...,a;,a+1,...,a+ k —1i), and we have the
following embeddings and isomorphism:
T =0([v %, vp]) X SP(ay,a9,...,a;,a+1,... a+k—1)
% x §([v™p, v p]) x v p x - x TR gy
SP(ay, a9, ... a;,a,...,a+k—1i—1)
+1 a+k—z‘p % 5([7/_ap, Va—lp]) ~

SP(ay,ag,...,a;,a,...,a+k—1i—1).

i X VT p X - XY

From [24, Theorem 4.1(iii)] one can see that 7 is also a subrepresenta-
tion of the induced representation d([v=%p,v*p|) X SP(ay,as,...,a;_1,a,a+
1,...,a+k —1), so we have:

T —=0([v"%p, %)) x SP(ay,as,...,a;_1,a,a+1,...;a+k —1)
—0([v"%p,v%]) x V*p x SP(ay,ag,...,a;i—1,a—lya+1,...;a+k—1)
v x v x 0([v % p, v p]) %

SP(ay,ag,...,a;i1,a—la+1,...;a+k—1)
S0 X Vi X v p x - x v TR s S([v %, v p]) X
SP(ay,ag,...,a;,a—1,...;a+k—1—1).
It follows that p*(8([v=%,v* p]) x SP(ay,as,...,a;,a,...,a+k—i—1))

contains an irreducible constituent of the form v*p® o1, and 7 is a subrepre-
sentation of an induced representation of the form v%pxv**px. .. xpetF=ipx
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v*p X 0y. Thus, Frobenius reciprocity shows that the Jacquet module of 7
with respect to an appropriate parabolic subgroup contains an irreducible
representation of the form 1% @ v p® - - @ v+ "1 p @ v @ m;. From the
embedding m < §([v~%p,vp|) X SP(ay, a9, ...,a;_1,a,a+1,... a+k—i) we
also obtain that a is the maximal j such that the Jacquet module of m with
respect to an appropriate parabolic subgroup contains an irreducible repre-
sentation of the form 17p ® 1/ lp ® --- @ v*"*~p ® o3. Furthermore, using
the same embedding we deduce that p*(7) does not contain an irreducible
constituent of the form 1% x v%p x v%p ® o4. Obviously, v**~p does not
appear in the cuspidal support of ;.

In the same way as in the proof of the previous lemma one can deter-
mine 7, and in the same way as in the proof of Lemma 3.4 we deduce
that n’ is a subrepresentation of an induced representation of the form
S([v=a*+ip, v=ap]) x v=% x ), for some irreducible representation 7. Now
in the same way as in the proof of the previous lemma one can show that
(T U{(151, Y1+1), (X142, Yi2) }, m1, ™) satisfies the property (a) of Definition
4.1.

Also, p* () does not contain an irreducible constituent of the form v~%p®
04, since otherwise we would have an embedding of the form

T =S v XU X v % X o3
which would lead to an embedding
T = Vip X Vip X V' X 0og,

a contradiction. From Lemma 4.5 we deduce that (TU{ (2131, ¥i11), (T2, Yia2) },
m, ) satisfies the property (b3) of Definition 4.1, and it obviously satis-
fies the property (b1). It remains to check the property (b2), so let 7} =
L(6},85,...,0.,7). Using Lemma 4.6 we conclude that we only need to check
that if e(d7) < —a, for some j € {1,2,...,7}, then v™% x §; = &5 x v ™.
Write &7 = d([v™p, % p]). 1f e(d;) < —a, it follows at once that z; <
—a. Suppose that there is some j € {1,2,...,r} such that e(d;) < —a
and v~%p X &} is not isomorphic to i X v~%p. Let us denote the minimal
such j by jmin. Then we have y; . = —a —1. For j = 1,2,..., jmin — 1,
since e(d;) < e(d),,) and &5 < v¥p x 6([v"p, % p]), we have either y; <
Yjp1 OF 0) X v¥itip &2 p¥itip x 4t This enables us to conclude that 7 is a

subrepresentation of v¥px7{, for y < —a—1 and an irreducible representation
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7{. Consequently, the Jacquet module of 7" with respect to an appropriate
parabolic subgroup contains v % ® --- @ v ip v @ vy @ 7).

Using the property (a) of Definition 4.1, which has already been checked,
we deduce that p*(m) > v~Yp ® me, for some irreducible representation .
But, since 7; is a subquotient of ([~ p, v 1p]) x SP(ay, as, ..., a;, a,a+
1...,a+k—i—1), from the structural formula and [14, Theorem 4.6] follows
that p*(m ) does not contain irreducible constituent of the form v*p ® my for
x > a+ 1, so it can not contain v Yp ® m,.

Consequently, (T'U{(z141, Yit1), (Ti2, Yit2)}, 1, 7)) satisfies the property
(b2) of Definition 4.1 and (T'U {(x;11, Yi+1), (142, Yit2) }, ™1, 7)) is a (0,0)-
triple. O

Lemma 4.14. Suppose that (T, m, ') is a (0,0)-triple such that
= 5([1/—&/)’ Vap]) X SP(ala az, . .. 7ak)7

where —1 < a1 < as < --- < ag, a — a; is an integer for 1 = 1,2,... k,
a > «, and there is some j € {1,2,...,k} such that a; = a and a;41 = a;+1
fori>j. Letl = |T|. Let inax denote the mazimal i such that the Jacquet
module of m with respect to an appropriate parabolic subgroup contains an
irreducible constituent of the form v¥p @V H1pR - QU™ p RV PR VpRa’.
Let x40 = Gk, Yig1 = Ginees Tiv2 = Yir2 = A, T3 = Yig3 = a and let T
denote an irreducible representation such that ©' < §([v~% p, v~ %max p|) x
v X v % x . Also, let m; denote the irreducible representation

S([v=Tp, v pl) x SP(ay,ag, ..., Qi 1, Qi — 1, -+ — 1)

Then (T'U {(2141, Yi1)s (Trv2, Yir2)s (Tr43, Yi43) ™1, 1) 48 a (0,0)-triple.

Proof. Tt can be deduced using [22, Proposition 2.1] that the induced repre-
sentation §([v~%p, v%p]) x SP(ay,as,...,ax) is irreducible. Thus, there is an
i such that p*(7) contains an irreducible constituent

L(ai, @iy1, ... a5) X V'p X V' p®
S([v=p, I/a_lp]) x SP(ay,ag,...,¢;1,a; — 1,... a5 — 1),

where a; < a. The rest of the proof now follows exactly as in the proof of
Lemma 4.13. [
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Lemma 4.15. Suppose that (T, m,7") is a (o,0)-triple such that

T=6([v %, vp]) X Ocusp,

where a < « and o — a € Z. Then 7' is the unique irreducible subrepresen-
tation of the induced representation
—a+1 [a]—a—1

—a+1 [a]l—a—1

vl xvTip X p XU p XU

pPX XU P X Tremp,

where Tiemp stands for
(i) Ocusp, if @ # [a],

(11) p X Oeusp, if @ = [a].
Proof. For 0 < x < a such that a —x € 7Z, we have the following embeddings
and isomorphisms:

S([ " p, v p]) X Oeusp = S([V ™ p, v7p]) X V50 X Oy
= 5[ p, v"p]) X V7P X Oeusp
=% x 5([v™ M p, " p]) X Teusp
=V px v p X 5([v " p, v p]) X Oy
Two possibilities will be studied separately. First, let a # [a]|. A repeated
application of the previous procedure gives an embedding

_ _ 1 1
TV XV X V" p X v T p X X VEp X VI X Oy

In the same way as before, we deduce that the Jacquet module of 7’ with
respect to an approprlate parabohc subgroup contains v~ %pRv pRr " p®

vty R . QUTip@rTip® Ocusp, and, using [22, Lemma 3.1], we see that
7w’ is a subrepresentatlon of

—a+1 —a+1

V% x v % x v p Xy px---xu_%pXV_%pxacusp. (7)

Since the induced representation (7) has a unique irreducible (Langlands)
subrepresentation, this completely determines 7’ in this case.

Second, let @ = [a]. In the same way as in the first case we conclude
that 7’ is a subrepresentation of

—a+1 —a+1

vV x v X px v Mo x o x v o x v p X (p X o). (8)

We note that the induced representation px o, is irreducible and tempered,
so 7' is the unique irreducible (Langlands) subrepresentation of (8), and the
lemma is proved. 0
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The previous sequence of lemmas leads to our second main result.

Theorem 4.16. Suppose that a discrete series o is a subrepresentation of
both induced representations

([~ 1p, v p|) X SP(ay, a9, ..., Qm_o, Qmity- -, Qrr2),
and
5([V_am_2107 Vam_lp]) X Sp(ala A2y .« Am—3;Amy - - - 7ak+2)7
such that o — a; is an integer fori = 1,2,....k+2, -1 < a1 < ay < --- <

ar < Qpy1 < Qgp2, m > 3 and a; > 0 if m = 3. Let ag = a — [a] — 1.
If there exists an i, k —m + 3 < 1 < k, such that ar_;11 > ap_; + 2, let
r=k—m—a+3, and otherwise let 1 = —ap,—o. Also, let Tyemp denote ey
if a # [a] and let Tyemp denote p X oeysp if @ = [a]. The Aubert dual o of o

1s the unique irreducible subrepresentation of the induced representation

k—m+2 —akp_i12—2 —am—1—1
11 S o) x [T o0, v p))
=1 j=—ag_it3 Jj=—am
—am—o—1
x [T (6= "2p,07p]) x v7p) x
j=—am—1
k —ap—;—2
H <5([Vj7i+1p7 l/jp]) > iji+kfm+3p « iji+kfm+3p) >
i=k—m+3 j=—ar_it1
[a]—a—1
X H (V'p X V'p) X Tiemp- (9)

i=r

Proof. Theorem follows from an inductive application of Lemmas 4.8, 4.9,
4.12, 4.13, 4.14 and 4.15, starting from (o, 7)-triple (0, 0, ). We note that it
follows from the definition of the (o, 7)-triple that in each step & is obtained
as an irreducible subrepresentation of the induced representation having a
unique irreducible subrepresentation.

First we are in the case of Lemma 4.8 (if m = k + 2), or in the case of
Lemma 4.12 (if m < k + 1). Using a repeated application of these lemmas,
together with Lemma 3.3 and a reasoning similar to the one used in [17, Sec-
tion 3], we deduce that ¢ is a subrepresentation of an induced representation
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of the form

k—m+2 —ak—it2—2 —am—1—1
IT I @ eviel)x ] o " 2p,07p]) xxi,
i=1 j=—ak_ii3 J=—am

for some irreducible representation 7.
Note that, if m < k, after several applications of Lemma 4.12 we obtain
that o is a subrepresentation of an induced representation of the form

k—m+2 —ap_;y2—2

I S([V=p, 17 p]) x 7h,

=1 j=—ak—it+3

for some irreducible representation 7. In that step appear induced repre-
sentations

([~ tp, v p]) X SP(ay,ag, ..., 0m—o,0m +1,... apn +k—m+2),
and
([~ 4m2p, v 1p]) X SP(ay, a9, ..., Qm_3, Gy Gy + 1, .o G + k —m + 2).

Consequently, in the next application of Lemma 4.12, i,,,, will be equal to
m. Again, a repeated application of Lemma 4.12 produces the part

—Qpy—1—1

T s m2p, 0],

j=—am
and in the last application of that lemma appear induced representations
([~ 4m=tp, v 1p]) x SP(ay,ag,...,0m—2,0m-1+1,... apn_1+k—m+2),
and
([ 2p, v 1p|)}SP(ay, ag, ..., Gm—3, Gm—1, G141, . .., Q1 +hk—m+2).

This brings us to a situation described either in Lemma 4.9 (if m = k + 2),
or in Lemma 4.13 (if m < k + 1). A repeated application of an appropriate
lemma produces the part H;:ai’;jlj (6([7=*tm=2p, vip]) x vip). In the last
step we end with the induced representation

([~ 2p, v 2p|)}SP (a1, az, ..., Gm-3, A2, A2+1, ..., Qo thk—m+2).
(10)
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Hence, now we are either in a situation described in Lemma 4.14 (if a,, o+k—
m+2 > «) or in a situation described in Lemma 4.15 (if a,, o +k—m+2 < «,
ie,apothk—m+2=a-1).

If a,,_o + k—m+ 2 > a, the strongly positive representation

SP(al,ag,...,am_g,am_g,am_z + 1,...,am_2 —l—k‘—m—{—?)

is non-cuspidal, so we are in the case described in Lemma 4.14, and a repeated
application of that lemma produces the part

k —ag_;—2
H <6<[Vj7i+1p’ Vjﬂ]) « iji+k7m+3p > iji+k7m+3p).

i=k—m+3 j=—ak—it+1

Since
quspgSP<_[a—| +CY,_IVOZ_| +Oé‘|‘1,...,(lf—]_),

the last application of Lemma 4.14 gives the induced representation
5([V_(a_k+m_3)p, Va—k+m—3p]) >4 eusp

it m # 3, and the representation Tiey,, if m = 3.

We note that in the case a,,—o +k—m+2 > o and m = 3 we have either
r=k—a«aorr=—a. If r=—ay, then a; < ag + 2 and, since a; > 0 for
m = 3, we have a; = 0. Thus, if a,,_o +k —m +2 > o and m = 3, then we
have r € {0, 3}, so 7 > [a] — a — 1 and the product Hgilfa*l(yip X Vip) is
empty.

Ifay, o+k—m+2>aand m # 3, using Lemma 4.15 we directly obtain
the part [[[*17* 7 (1ip X 12p) X Tyemp.

It remains to consider the case a,,_s +k—m+2 < a. From a description
of the strongly positive discrete series follows that a,, o +k—m+2=a—1,

a; =« — [a] and a;4y =a;+ 1 fori =0,1,...,m — 3. Thus, the product
k —ag_;—2
H (6<[Vj7i+1p7 Vj,O]) > iji+kfm+3p > iji+k7m+3p)
i=k—m+3 j=—ak—it+1
is empty in this case, and r = —a,,_».
The induced representation (10) is in this case isomorphic to the induced

representation d([v"p, v"p|) X Oeysp, and an application of Lemma 4.15 fin-
ishes the proof. O

41



Note that, if we denote by ¢’ a discrete series subrepresentation of
([ tp, v pl) x SP(ay, ag,...,Qm—o,Qmit, .-, Qkio)

non-isomorphic to o, following the notation from the previous theorem, then
it follows from Theorem 2.3 that either m = k+2 or ¢’ is a subrepresentation
of

([ p, v+ pl) x SP(ay,ag, ..., Gm_1,Qmy2y - -, Akr2)-

In the first case, the Aubert dual of ¢’ is described in Theorem 4.11, while in
the second case the Aubert dual of ¢’ can be obtained applying the previous
theorem with indices one higher.

We also note that if a,, — a1 € {1,2} or a1 — am—o € {1,2}, it
follows from [5] that the unique irreducible subrepresentation of the induced
representation (9) is unitarizable. Also, if o is a subquotient of a principal
series, considered groups are split, and charF' = 0, it follows from [25] that
the unique irreducible subrepresentation of the induced representation (9) is
unitarizable.

In the rest of this section we determine the Aubert dual of a discrete
series o in the following two cases:

1. Discrete series o is a subrepresentation of an induced representation of
the form o([v=" p, v*2p|) X SP(as,ay,...,a542) for 0 < a; < ag < --- <
ap < apy1 < apio such that a—a; is an integer fori = 1,2, ..., k+2, and
o is not a subrepresentation of d([v~=2p, v*p|) x SP(a1, a4, ..., axi2).

2. Discrete series o is a subrepresentation of an induced representation
of the form §([v=2p,v*p]) X SP(ay, a4, ..., akss) for —3 = a; < as <
co- < ap < agy1 < agyo such that a—a; is an integer forv = 1,2, ... k+
2, a0 > %, and o is not a subrepresentation of the induced representation
([v=®3p,v™p|) x SP(ai,as, as...,axr2). A similar case when o = %

will be considered in the following section.
We start our determination with several lemmas.

Lemma 4.17. Suppose that (T, m,7') is a (o,0)-triple such that 7 is a sub-

representation of 6([v=" p,v*?p|) x SP(ag,ay,...,aks2) for 0 < a; < ag <
coe < ag < gy < apao such that o — a; is an integer for i =1,2,... k+ 2,
and 7 is not a subrepresentation of §([v=2p,v*p|) X SP(ay,ay4, ..., ak12).
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Let | = |T|. Let imax denote the mazimal i such that the Jacquet mod-
ule of m with respect to an appropriate parabolic subgroup contains an ir-
reducible constituent of the form v%p @ V*+ip @ --- @ v*+2p @ o'. Let
Tip1 = Qpio,Yip1 = a4, and let © denote an irreducible representation
such that " < §([p~%+2p, v~ %max p|) X 7}. To define 71, we consider several
possibilities.

o [fina > 2, let m denote a discrete series subrepresentation of
6([V_a1p7 Va2p]) X S‘P(a37 A 7a7:1nax—17 a’imax - 17 AR 7ak+2 - ]')7
which 1s not a subrepresentation of

([~ %p,v®p|) x SP(ay, aa, ..., Qi 15 Qi — Ly ooy Qo — 1).

o [finmax =2 and ay > a1+ 1, let my denote a discrete series subrepresen-
tation of 6([v="p,v*21p]) x SP(az —1,...,a512 — 1), which is not a
subrepresentation of §([v=2 M p, v 1p]) x SP(a1,as—1,...,ap0—1).

o [finax =2 and as = a1 + 1, let m; denote a tempered subrepresentation
of 6([v="p,v™p]) x SP(as—1,...,axr2 — 1) which does not contain an
irreducible constituent of the form v 1p @ o' in the Jacquet module
with respect to an appropriate parabolic subgroup.

Then (T U{(x1+1,y141)}, 71, 7)) is a (o,0)-triple.

Proof. This lemma can be proved in the same way as Lemma 4.12. Let us just
comment on the definition of 7 in the case i« = 2 and a» = a; + 1. Since
in this case ;11 = a;+1fori = 2,3,...,k+1, it follows that if an irreducible
constituent of the form v*~!p ® ¢’ appears in p*(6([v="p,v* p]) x SP(az —
1,...,ak42—1)), then o' Z ([ p, v p|) x SP(az—2,a4— 1, ..., ap2—1),
and such constituent appears in p*(d([v=" p,v* p]) X SP(az—1,... ,ag2—1))
with multiplicity one. Thus, there is a unique irreducible subrepresentation
of §([v="p,v™p]) x SP(az — 1,...,ax+2 — 1) which contains an irreducible
constituent of the form v%~1p® ¢’ in the Jacquet module with respect to an
appropriate parabolic subgroup.

Suppose, on the contrary, that u*(m) > v*2p ® o’. Then the Jacquet
module of 7 with respect to an appropriate parabolic subgroup contains an
irreducible constituent of the form v pRv*3pR- - - Vr*+2pRr*2p®o}. This
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implies that there is a representation o} such that 7 is a subrepresentation
of v2p X VBp X -+ X VM H2p X v*2p X gl Since ipm.x = 2, we obtain

T L(w™p,v%p, ..., v%2p) X 1v*%p X 0y,

and Frobenius reciprocity, together with transitivity of Jacquet modules and
Lemma 3.1, implies that p*(7) > v*p X v*?p ® o}, for an irreducible repre-
sentation o%, which is impossible. H

Next lemma can be proved in the same way as the previous one.

Lemma 4.18. Suppose that (T, m,7') is a (0,0)-triple such that 7 is a sub-

representation of 6([v="2p,v%p]) X SP(ay, a4, ..., app2) for —2 = a1 < az <
coe < ag < apyy < Apao such that o — a; is an integer for i =1,2,... k+ 2,
and  is not a subrepresentation of 6([v=*p, v*p|) x SP(ay,as,as ..., ax2).

Let | = |T|. Let imax denote the maximal i such that the Jacquet mod-
ule of m with respect to an appropriate parabolic subgroup contains an ir-
reducible constituent of the form v%p ® v%+ip @ --- @ v%+2p ® o'. Let
Tip1 = Qpyo,Yir1 = Q4. ond let © denote an irreducible representation
such that " — §([p~%+2p, v~ %max p|) X 7). To define m, we consider several
possibilities.

o [fin. > 3, let my denote a discrete series subrepresentation of
[y~ p,v®p|) X SP(ay,aq, ..., a;, 1,0, —1,... 082 — 1),
which is not a subrepresentation of

[y ®p,v*p|) x SP(ay,as, ..., 4;, 1,0, —1,... ¢k —1).

o [fina =3 andasz > as+1, let m; denote a discrete series subrepresen-
tation of 6([v="2p, v 1p]) x SP(ay,a;—1, ..., apo— 1), which is not a
subrepresentation of §([v= M p, v =1p|) x SP(ay,a5—1,... a2 —1).

o [fina =3 and as = as+ 1, let m denote a tempered subrepresentation
of 0([v=%2p,v*p|) ¥ SP(a1,as—1,. .., agr2—1), which does not contain
an irreducible constituent of the form v*~p®d’ in the Jacquet module
with respect to an appropriate parabolic subgroup.

Then (T'U{(x141,y141) }, 71, 71) is a (o,0)-triple.
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The following two lemmas enable us to handle a tempered case which
appears in an application of the inductive procedure.

Lemma 4.19. Suppose that (T, m,7") is a (o,0)-triple such that 7 is a sub-
representation of 6([v=%p,v*p]) x SP(a + 1,...,a + k) and p*(7) does not
contain an irreducible constituent of the form v p @ o’. Let 1 = |T)|.

o Ifa> o]l —a,let ;1 =a+k,yp1 = a, Typo = Yo = a and let
denote an irreducible representation such that ' < §([v="%p,v=p]) x
v x 7. Also, let w1 denote a tempered subrepresentation of

S([v="tp, v ) x SP(a,...,a+k—1)

which does not contain an irreducible constituent of the form v*pRao’ in
the Jacquet module with respect to an appropriate parabolic subgroup.

Then (T'U (111, Yi+1), (T2, Yia) } m1, ) 1S a (0,0)-triple.

e [fa = 0, then «' is the unique irreducible subrepresentation of the
induced representation d([v=%p, p|) X Ceusp-

o Ifa = %, then ' is the unique irreducible subrepresentation of the
induced representation 5([v=""'p,v"2p]) x 7}, where

(i) m = L(6([v=p, V%p])agcuw)f if a > %; and
(ii) 7, is a tempered subrepresentation of 8([v"2p, v2p]) x Tcusp which
1
2

is not a subrepresentation of l/%p X SP(%), if o =

Proof. The case a > [a] — « can be handled following the same lines as in
the proofs of Lemma 4.13 and Lemma 4.17.
Now we deal with the case a = 0. Note that if p*(7') > v*p ® o, for
some irreducible ¢/, then x = 0. Also, 7 is a subrepresentation of p X vp X
- X VP X Opusp.  In the same way as before, we conclude that 7’ is a
subrepresentation of p X v71p X -+ X V"% X 0pysp and Lemma 3.4 implies
7 = L6([v="p, p]), Ocusp)-

It remains to consider the case a = % Let us first show that in this case
the Jacquet module of 7w with respect to an appropriate parabolic subgroup
does not contain an irreducible representation of the form vzp® y%p ® o' or,
equivalently, as one can see directly from the structural formula, p*(7) does
not contain an irreducible constituent of the form I/%p X yép@ SP(%, N
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1). Suppose, on the contrary, that p*(w) > V%p X I/%p ® SP(%, QA 1).
Then the Jacquet module of m with respect to an appropriate parabolic
subgroup contains

DN | Ut

,...,a—i—l).

N —

vipx vip® 8([vip,vip]) ® SP(—

Transitivity of Jacquet modules implies that there is a representation § €
Irr(GL(ns, F)) such that p*(7) > §® SP(—1,2,...,a+1) and m*(5) >
1 1 1 3 . .

vip x v2p ® §([v2p,v2p]). An application of the structural formula shows
that 6 = v2p x v2p x 0([v2p,v2p]), which leads to p*(7) > v2p ® o', for
some irreducible ¢/, a contradiction.

As in [12, Section 4], we obtain that SP(a+1,...,a+k) is a subrepresen-
tation of v px .- xv***pxa SP(a, ..., a+k—1), so T is a subrepresentation
of

1
y%px V%px coex Ty x V_%pN SP(g,...,a).

From the structural formula, [14, Theorem 4.6] and the fact that p*(7) does
not contain an irreducible constituent of the form v+ p®0o’, we deduce that if
p(m) > v*pRo’, then z = L. Corollary 4.7 implies that there is an irreducible

representation 7 such that 7’ is a subrepresentation of §([v=*"1p, y*%p]) X T.
Also, if p*(7') > v"p®0’, for some irreducible ¢’, then z = —3. Furthermore,
if u*(7') > v 2p®a’, then p*(o’) does not contain an irreducible constituent
of the form V*%p ® o”. This also implies that if pu*(7) > v*p ® o', then
xr = %, since otherwise we would have embeddings 7 < v*p x 7" and 7’ —
vip x v 2p x §([v=*Lp, v~ 2p]) x 7', for some irreducible representation 7/,
which is impossible.

Since v2 p appears twice in the cuspidal support of 7, the representation
7 is not strongly positive. Also, 7 is not a discrete series representation,
since otherwise we would have an embedding 7 — §([v"Yp,v"p]) x 7/, for
x>y > % and 7’ irreducible, a contradiction.

Let us consider two possibilities, depending of a.

First, we assume that a = % From the cuspidal support of 7 and the fact

that p*(7’) does not contain an irreducible constituent of the form Vip®

V™3 p®0’, we see that 7 is an irreducible subrepresentation of 8([v =2 p, v2 p]) x
. . 1 1

Ocusp- Let us show that 7 is not a subrepresentation of vz px.SP(5). Suppose,

on the contrary, that 7 is a subrepresentation of vz p x SP(L). Then p*(7)
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. 1 1 . . .
contains v2p X v2p @ Ocysp, Which provides an embedding

' §([v*p, V_%p]) X I/%p X y%p X O eusp-

Clearly, 7’ is then a subrepresentation of the induced representation

1

LO([v p,v72p]), v2p) X V2 X Ty

but then Lemma 3.1 gives

1

™ = vipx L6([v™" " p,v 73 p]), 12 p) X Ceusp,

a contradiction.
1

Now we assume that a > 5. Let 7 = L(61,62,...,0m, Ttemp). Suppose

that 7 = Tyep. Then 7 is a subrepresentation of an induced representation

of the form &([v=%p,v"p]) x 7/, for 7" irreducible tempered. Clearly, = = 3

and from the cuspidal support of 7 we see that 7/ is a strongly positive

representation. Thus, by [14, Lemma 3.6], 7/ = SP( —1,3,... ). This
gives us the following embeddings and isomorphism:
/ —a—1 _1 _1 1 1 3
7T<—>5([V PV QP])X(S([V 2p7’/2p])NSP(_§7§7"'7O‘)
1 3 1 1 3 1
v ipx §([v 1, y*%p]) XV2Zp XV 2p X V%p X SP(— >t Q)

= y_%p X l/%p X I/%p x o[ 1p, V_%pD X v~ 2p XSP(—=,=,...,0).
It follows that the Jacquet module of #’ with respect to an approprlate
parabohc subgroup contains an irreducible constituent of the form v~ 2p ®
V2p ® 1/2p ® o1. Thus, the Jacquet module of m with respect to an ap-
proprlate parabohc subgroup contains an irreducible constituent of the form
V2p QU™ 2p QU™ gp ® 09, contradicting the temperedness of 7.

Thus, 7 is non-tempered and m > 1. Let §; = o([v*ip,v¥ip]), for i =
1,2,...,m. It follows at once that y; = % and ;1 < —%. If m > 2, from the
cuspidal support of 7 we see that yo < x; — 1, contradicting e(d;) < e(ds).
Thus, m = 1. Also, Ttemp is a strongly positive representation and it is
isomorphic to SP( % ;,...,—:L‘l -1, —z1+1,—21+2,... ,a). If vy < —a,
Tiemp 18 @ subrepresentation of V‘““p X 0gp, for an appropriate strongly
positive representation og,. Since —z; +1 > g, this provides the following

l\.)I’_‘l\:)lt—l
N | —
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embedding and isomorphism:

7 = o[ w2 p]) X SV vEp)) x v p gy,
=y X §([v o, v 2p]) X B([™ p, v2p]) X 0

This implies that p*(7') > v*'*!p ® ¢/, for some irreducible o', which is

impossible. Consequently, x;1 = —a and in this case 7 is a unique irreducible
1

(Langlands) subrepresentation of d([v~%p,v2p|) X 0cysp. This finishes the

proof. O]

Lemma 4.20. Suppose that (T, m,7') is a (0,0)-triple such that 7 is a sub-
representation of 6([v=p,v"p]) x SP(—1,a+1,...,a + k — 1) which does
not contain an irreducible constituent of the form v*p ® o' in the Jacquet
module with respect to an appropriate parabolic subgroup. Let | = |T.

o Ifa> %, let ;1 =a+k—1,y41=a, xypo = Yo = a and let ) de-
note an irreducible representation such that 7' — §([v=¢*1p, v=%p]) x
v x 7y. Also, let w1 denote a tempered subrepresentation of

1
S([v=tp, v p]) x SP(—E,CL, a+k—2)

which does not contain an irreducible constituent of the form v*pRao’ in
the Jacquet module with respect to an appropriate parabolic subgroup.

Then (T'U {(111, Yi41), (Ti42, Yig2) }, 71, 1) is a (o,0)-triple.

o Ifa = %, then ' is the unique irreducible subrepresentation of the
induced representation §([vp, v"2p]) X V72 X Geusp.

Proof. We discuss only the case a = %, since the other case can be handled
in the same way as in the proof of Lemmas 4.13 and 4.17. We have the
following embeddings and isomorphism:

5([v=2p,v2p]) x SP(—

Sy, Q)

! £
DO | =
[\CRNGV]

1/%,0 X I/_%p X I/%p X e X VP X Ocysp

S %pxmpx xuo‘pxu_%pmamp.

Frobenius reciprocity implies that the Jacquet module of m with respect to
. . . 1 3 1

an appropriate parabolic subgroup contains 12p®v2pR---QV*p RV 2p®
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Teusp- Since p*(m) does not contain an irreducible constituent of the form
vip @ o for x > %, in the same way as in the proof of Lemma 4.6 one can
see that 7’ is a subrepresentation of an induced representation of the form
§([v=p,v~2p]) x ¢, for irreducible o”.

i

Note that the cuspidal support of ¢” consists of V3 p and ogysp. Since

I~

the induced representation V3 p X Ocysp is irreducible, it follows that o” =
y=3 p X Ocusp, and lemma is proved. ]

The following theorem can be proved in the same way as Theorem 4.16,
using a repeated application of Lemma 4.17 and Lemma 4.19.

Theorem 4.21. Suppose that a discrete series o is a subrepresentation of

(v~ p,v*p|) X SP(ag,ay,...,a542) for 0 < a; < ag < -+ < ap < apyq <
ap12 such that o — a; is an integer fori=1,2,... k42, and that o is not a
subrepresentation of 0([v~=2p, v*3p|) x SP(ay, a4, ..., axy2). Letag = [a] —av.

The Aubert dual ¢ of o is the unique irreducible subrepresentation of the
induced representation

—ap—it+2—2 —a1—1

k
H‘ [T 60 ) x H ([ p, 17 p]) %
TI G *p.va) x 9p) 0w (1)

where 7 stands for
o L(6([v™p. pl) Ocusp), if a = [a],
o L(6([v=o"1p, V_%p]),é([y_ap, V%p]),awsp), if  # [a] and o > %,

o L(O([v="1p, vz p]), Tiemp), WHETE Tiemy s a tempered subrepresentation
of 5([1/_%p, l/%p]) X Ocusp Which is not a subrepresentation of Vip X
SP(L), ifa=1.

We also note that if as—a; € {1, 2} then it follows from [5] that the unique
irreducible subrepresentation of the induced representation (11) is unitariz-
able. Also, if o is a subquotient of a principal series, considered groups
are split, and charF" = 0, it follows from [25] that the unique irreducible
subrepresentation of the induced representation (11) is unitarizable.

The following theorem can also be proved in the same way as Theorem
4.16, using a repeated application of Lemma 4.18 and Lemma 4.20.
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Theorem 4.22. Suppose that a discrete series o is a subrepresentation of

I([v~®2p,v®p|) X SP(ay,ay,...,ak42) for —% =a < ap < - < o <
api1 < Qpio such that o — a; is an integer fori =1,2,.... k+ 2, and that o
is not a subrepresentation of §([v~"p,v*p|) x SP(ay,aq,as. .., a,2). The

Aubert dual o of o is the unique irreducible subrepresentation of the induced
representation of the form

k—1—Qg_;y2—2 —as—1
IT II o oo x I 6’ p,vip))x
i=1 j=—ak—_it3 j=—as

[T G p.07p]) x 17p) x 8([v=p,v™2p]) X V7 2p X Oy (12)

Jj=—a2

N

We also note that if a3—as € {1, 2} then it follows from [5] that the unique
irreducible subrepresentation of the induced representation (12) is unitariz-
able. Also, if o is a subquotient of a principal series, considered groups
are split, and charF" = 0, it follows from [25] that the unique irreducible
subrepresentation of the induced representation (12) is unitarizable.

5 Two exceptional cases

In this section we discuss the remaining two cases. First, we deal with the
case when the rank one reducibility equals zero.

Theorem 5.1. Suppose that p X oeysp Teduces and write p X Ocysp = T1 + T—1
as a sum of mutually non-isomorphic tempered representations in R(G). Let
a,b denote non-negative integers such that a < b and let o; denote a discrete
series subrepresentation of 6([v™"p,V°p]) X Oeyusp such that o; is a subrepre-
sentation of §([vp, vep]) x 8([vp, V°p]) x 7i, fori=1,—1. The Aubert dual G;
of o; is the unique irreducible subrepresentation of the induced representation

b+1 a+1 —a+1

pX-- -Xl/_leV_leT_i,
(13)

v loxv " px ox T v x iy pxy T Xy
fori=1,—1.

Proof. Note that it follows directly from Theorem 2.1 that 7, = 7_;, for
i=1,-1
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For an irreducible subrepresentation o of §([v=%p, 1°p]) X Geysp, it follows
from [28, Proposition 7.5, and it is also recalled in Theorem 2.4, that there
is a unique i € {1, —1} such that o is a subrepresentation of J([vp,v%p]) X
§([vp, v°p]) x 7;. Tt follows that o is a subrepresentation of

o x - x v x vl X Vi X - X Up X Up X T

Consequently, the Jacquet module of ¢ with respect to an appropriate
parabolic subgroup contains 1’0 ®- - RV pRUpR PR - - RUPRVP R T;.
It follows from the properties of the Aubert involution that the Jacquet
module of o with respect to an appropriate parabolic subgroup contains
V@ @r T lHrerprip®---@r i p@r T p® 7_; and it does not
contain v p® - @r v HRXr O r Y- Qv v T

Also, since 7; is a subrepresentation of p X o, it follows that the Jacquet
module of o with respect to an appropriate parabolic subgroup contains
Wp @@t p@rp@ripR - - QupRupRpR Ocusp- Consequently,
the Jacquet module of & with respect to an appropriate parabolic subgroup
contains v @ Qv R r YR QU lpR v p @ gy
and 7 is a subrepresentation of v ’p x -+ X VOl p X v X VT X -+ X
Vo X v X p X Oy

Thus, there is a j € {1, —1} such that ¢ is a unique irreducible (Lang-
lands) subrepresentation of v p x -+ X v ¥ lpx v x vl X - X VTLp X
v~ 'p x 7;. Using the Frobenius reciprocity and the above observation we
deduce 7 = —i. This finishes the proof. O]

We also note that, for b — a € {1,2}, it follows from [5] that the unique
irreducible subrepresentation of the induced representation (13) is unitariz-
able.

The following result completes our description.

Theorem 5.2. Suppose that V%p X Oeusp Teduces and let a,b denote positive
half-integers such that a < b. Let o denote an irreducible subrepresentation
of 8([v=p,%p]) X Geusp. We have two possibilities.

(i) If p* (o) > 6([vzp,v°p]) x 6([v2p, °p]) @ Oeusp, then the Aubert dual of
o 18 the unique irreducible subrepresentation of

-b —a—1 —a —a -1 -1
VP X XU p XU X UTp X X VT 2D X VT 2P X Oy (14)
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(ii) If (o) does not contain the irreducible constituent §([v2p,v°p]) x
§([vap, vp)) ® Ocusp, then the Aubert dual of o is the unique irreducible
subrepresentation of

v lpx- o xvT Ty x T x T x -Xl/*%px I/*%pXV*%pNS(ﬁ). (15)

Proof. Let us first consider the case pu*(0) > 8([vzp,v%p]) x 8([v2p, 1v0p]) @
Ocusp- 1t can be directly seen, using formula for m* repeteadly, that the
Jacquet module of ¢ with respect to an appropriate parabolic subgroup con-
tains a cuspidal representation 1°p®- - -@v* M PRV PRVI PR - - -®V%p®yép®
Ocusp- Using Theorem 2.1, we directly obtain that o is a subrepresentation

of

—b —a—1 —a —a -1 -1
vV pX--- XV PXRXV "PpXV "PX: XV 20XV 20X Ocysp,

and this induced representation contains a unique irreducible subrepresenta-
tion.
Now we consider the other possibility. We obviously have an embedding

o= Vpx v o x o x v x ([, 1p]) X Ceusp-
For a positive half-integer =, = > %, we have

S p, v p]) X Oeusp = S([V ™ p, v7p]) X V50 X Teusp
= 5([ ™", v7pl) X VTP X Ocusy
—x—i—lp’ Vzp]) N Ucusp

,x+1p7 folp]) 0 Ucusp-

>~ %p x (v
=vPp x vip x o([v

Consequently, we get that ¢ is a subrepresentation of
Vo x oo x v x v x v X - X V%p X y%p X 5([V*%p, V%p]) X Oeusp-

In the same way as in the proof of Theorem 5.1, we obtain that there is an

irreducible representation 7 of some G,, whose cuspidal support consists of
1 1 ~ . .

v2p,v2p and Oy, such that o is a subrepresentation of

—b —a—1 —a —a -3 -3
VOpX e XU T p XU XU X e X VT 2p X VT 2p X T (16)
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It remains to determine 7. From its cuspidal support, we obtain that 7 is
a subrepresentation of one of the following induced representations: V*%p X
y*%p X Oeusps 5([V*%p, V%p]) X Oeysp and V*%p X S(%)

Obviously, 7 is not a subrepresentation of V3 p X I/_%p X O cysp, Since this
would imply that o is isomorphic to the other irreducible subrepresentation
of 6([v=%p, v°p]) X G eusp, Which is impossible.

If we assume that 7 is a subrepresentation of ¢ ([V_% % p]) X Oeusp, then
we have m — y%p X V_%p X Oeysp- Since for x < —% we have

vep X V%p = V%p 2
from (16) we obtain that & is a subrepresentation of
1 —b —a—1 —a —a -3 -3 -1
VIPpX U pX - XV p XU XU X X VT 2pX VT 2D X VT 2P X Opysp

This implies that the Jacquet module of o with respect to an appropriate
parabolic subgroup contains

VEIp@Up @ @U@ @U@ QPR VP D VP ® Ty

contradicting the square-integrability of . Thus, 7 is a subrepresentation of
1
vT2p X S(%) and theorem is proved. O

We also note that, for b — a € {1,2}, it follows from [5] that a unique
irreducible subrepresentation of the induced representation (14) and a unique
irreducible subrepresentation of the induced representation (15) are unitariz-

able.
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